RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 2020, Volume 54, Issue 4, Pages 85–97 (Mi faa3828)

On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
N. S. Ustinov

References

1. A. Cotsiolis, N. K. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives”, J. Math. Anal. Appl., 295:1 (2004), 225–236  crossref  mathscinet  zmath  scopus
2. R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790  crossref  mathscinet  zmath  elib  scopus
3. R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlinear Anal.: Theory Methods Appl., 121 (2015), 123–129  crossref  mathscinet  zmath  scopus
4. A. L. Pereira, M. C. Pereira, “A generic property for the eigenfunctions of the Laplacian”, Topol. Methods Nonlinear. Anal., 20:2 (2002), 283–313  crossref  mathscinet  zmath
5. V. P. Ilin, “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Matem. sb., 54(96):3 (1961), 331–380  mathnet  zmath
6. A. I. Nazarov, “O tochnoi konstante v odnomernoi teoreme vlozheniya”, Problemy mat. analiza, no. 19, Nauchn. kn., Novosibirsk, 1999, 149–163
7. A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Voprosy sovremennoi teorii approksimatsii, Izd-vo Sankt-Peterburgskogo universiteta, 2004, 146–158
8. A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Problemy mat. analiza, 27, T. Rozhkovskaya, Novosibirsk, 2004, 109–136
9. L. N. Slobodetskii, “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 197 (1958), 54–112  zmath
10. Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
11. N. S. Ustinov, “O razreshimosti polulineinoi zadachi so spektralnym drobnym laplasianom Neimana i kriticheskoi pravoi chastyu”, Algebra i analiz (to appear)
12. A. P. Scheglova, “Zadacha Neimana dlya polulineinogo ellipticheskogo uravneniya v tonkom tsilindre. Resheniya s naimenshei energiei”, Zap. nauchn. sem. POMI, 348, 2007, 272–302  mathnet


© Steklov Math. Inst. of RAS, 2025