RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya

Funktsional. Anal. i Prilozhen., 2020, Volume 54, Issue 4, Pages 3–16 (Mi faa3837)

Sigma Functions and Lie Algebras of Schrödinger Operators
V. M. Buchstaber, E. Yu. Bunkova

References

1. V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27  mathnet  crossref  mathscinet  zmath
2. D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988  mathscinet
3. T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382  crossref  mathscinet  zmath  adsnasa  scopus
4. V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry, and Topology: On the Crossroad, Adv. Math. Sci., Amer. Math. Soc. Transl., Ser. 2, 179, Providence, RI, 1997, 1–34  mathscinet
5. V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, v. 294, Tr. MIAN, MAIK, M., 2016, 191–215  mathnet  crossref
6. V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-dimensional sigma-functions, arXiv: 1208.0990
7. V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “$\sigma$-functions: Old and new results”, Integrable Systems and Algebraic Geometry, v. 2, LMS Lecture Note Series, 459, Cambridge Univ. Press, Cambridge, 2019, 175–214  mathscinet; arXiv: 1810.11079
8. V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34  mathnet  crossref  mathscinet  zmath
9. V. I. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, 62, Kluwer Academic Publisher Group, Dordrecht, 1990  crossref  mathscinet  zmath
10. J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395
11. H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384  crossref  mathscinet  zmath
12. V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120  mathscinet  zmath
13. E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Reprint of 4th (1927) ed., v. 2, Transcendental functions, Cambridge Univ. Press, Cambridge, 1996  mathscinet  zmath
14. E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112  crossref  mathscinet  zmath  scopus; arXiv: 1703.03947  mathscinet
15. V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4(376) (2007), 153–154  mathnet  crossref  mathscinet  zmath
16. V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36  mathnet  crossref  mathscinet  zmath
17. V. M. Bukhshtaber, E. Yu. Bunkova, “Algebry Li operatorov teploprovodnosti v negolonomnom repere”, Matem. zametki, 108:1 (2020), 17–32  mathnet  crossref  mathscinet  zmath
18. F. G. Frobenius, L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337  mathscinet


© Steklov Math. Inst. of RAS, 2025