RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика

Фундамент. и прикл. матем., 1995, том 1, выпуск 3, страницы 729–751 (Mi fpm100)

Исчисление Ламбека и формальные грамматики
М. Р. Пентус

Список литературы

1. Ж. Лаллеман, Полугруппы и комбинаторные приложения, Мир, М., 1985  mathscinet
2. Y. Bar-Hillel, C. Gaifman, E. Shamir, “On categorial and phrase-structure grammars”, Bull. Res. Council Israel Sect. F, 9F (1960), 1–16  mathscinet
3. J van Benthem., Language in Action. Categories, Lambdas and Dynamic Logic, North-Holland, Amsterdam, 1991  mathscinet
4. W. Buszkowski, “The equivalence of unidirectional Lambek categorial grammars and context-free grammars”, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 31 (1985), 369–384  crossref  mathscinet  zmath
5. W. Buszkowski, “Generative power of categorial grammars”, Categorial Grammars and Natural Language Structures, ed. R. T. Oehrle, E. Bach, D. Wheeler, Reidel, Dordrecht, 1988, 69–94
6. W. Buszkowski, “On generative capacity of the Lambek calculus”, Logics in AI, ed. J. van Eijck, Springer, Berlin, 1991, 139–152  mathscinet  zmath
7. W. Buszkowski, On the equivalence of Lambek categorial grammars and basic categorial grammars, ILLC Prepublication Series, LP–93–07, Institute for Logic, Language and Computation, University of Amsterdam, 1993
8. J. Lambek, “The mathematics of sentence structure”, American Mathematical Monthly, 65:3 (1958), 154–170  crossref  mathscinet  zmath
9. M. Pentus, Equivalent Types in Lambek Calculus and Linear Logic., Preprint № 2, of the Department of Math. Logic, Steklov Math. Institute, Series Logic and Computer Science, Moscow, 1992
10. M. Pentus, Lambek Grammars Are Context Free, Preprint № 8, of the Department of Math. Logic, Steklov Math. Institute, Series Logic and Computer Science, Moscow, 1993  mathscinet
11. M. Pentus, “Lambek grammars are context free”, Proceedings of the annual conference on Logic in Computer Science (LICS'93), 1993  mathscinet
12. D. Roorda, Resource Logics: Proof-theoretical Investigations, PhD thesis, Fac. Math. and Comp. Sc., University of Amsterdam, 1991
13. D. Roorda, “Interpolation in fragments of classical linear logic”, The Journal of Symbolic Logic, 59:2 (1994), 419–444  crossref  mathscinet  zmath
14. K. Schütte, “Der interpolationssatz der intuitionistischen prädikatenlogik”, Mathematische Annalen, 148 (1962), 192–200  crossref  mathscinet  zmath
15. D. N. Yetter., “Quantales and noncommutative linear logic”, Journal of Symbolic Logic, 55 (1990), 41–64  crossref  mathscinet  zmath


© МИАН, 2025