|
|
|
Литература
|
|
|
1. |
Нестеренко Ю. В., Черепнëв М. А. и др., Отчëт по хоздоговору “Исследование алгоритмических подходов к решению систем алгебраических уравнений над конечными полями на многопроцессорных кластерах”, Алгоритм-К, 2008 |
2. |
Черепнëв М. А., “Блочный алгоритм типа Ланцоша решения разреженных систем линейных уравнений”, Дискрет. мат., 20:1 (2008), 145–150 |
3. |
Astakhov V. V., “Estimates of the running time and memory requirements of the new algorithm of solving large sparse linear systems over the field with two elements”, J. Tambov State Univ., 15:4, The works of participants of Int. conf. “ParCA” presented according to the results of reviewing by International Program Committee (2010), 1311–1327 |
4. |
Barnett M., Littlefield R., Payne D. G., van de Geijn R., “Global combine on mesh architectures with wormhole routing”, J. Parallel and Distributed Comput. Arch., 24:2 (1995), 191–201 |
5. |
Beckermann B., Labahn G., “A uniform approach for the fast computation of matrix-type Padé approximants”, SIAM J. Matrix Anal. Appl., 15:3 (1994), 804–823 |
6. |
Coppersmith D., “Solving homogeneous linear equations over $GF(2)$ via block Widemann algorithm”, Math. Comput., 62:205 (1994), 333–350 |
7. |
Giorgi P., Jeannerod C.-P., Villard G., “On complexity of polynomial matrix computations”, ISSAC' 03, Proc. of the Int. Symp. on Symbolic and Algebraic Computation (August 3–6, 2003, Philadelphia, USA), ACM, New York, 2003, 135–142 |
8. |
Jeannerod C.-P., Villard G., “Asymptotically fast polynomial matrix algorithms for multivariable systems”, Int. J. Control, 79:11 (2006), 1359–1367 |
9. |
Kaltofen E., “Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems”, Math. Comput., 64:210 (1995), 777–806 |
10. |
Kleinjung T., Aoki K., Franke J., Lenstra A. K., Thomé E., Bos J. W., Gaudry P., Kruppa A., Montgomery P. L., Osvik D. A., Riele H., Timofeev A., Zimmermann P., Factorization of a 768-bit RSA modulus. Version 1.0, http://eprint.iacr.org/2010/006.pdf, 2010 |
11. |
Montgomery P. L., “A clock Lanczos algorithm for finding dependencies over $GF(2)$”, Adv. Cryptology – EuroCrypt' 95, Lect. Notes Comput. Sci., 921, eds. L. C. Guillou, J.-J. Quisquater, Springer, Berlin, 1995, 106–120 |
12. |
Thomé E., “Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm”, J. Symbol. Comput., 33:5 (2002), 757–775 |
13. |
Villard G., A study of Coppersmith's block Wiedemann algorithm using matrix polynomials, RR 975-I-M, IMAG, Grenoble, France, 1997 |