|
|
|
Литература
|
|
|
1. |
Федерер Г., Геометрическая теория меры, Наука, М., 1987 |
2. |
Стейн И., Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973 |
3. |
Adams D. R., Hedberg L. I., Function spaces and potential theory, Springer, Berlin, 1996 |
4. |
Bagby T., Ziemer C., “Pointwise differentiability and absolute continuity”, Trans. Am. Math. Soc., 191 (1974), 129–148 |
5. |
Calderón A. P., “Lebesgue spaces of differentiable functions and distributions”, Proc. Symp. Pure Math., 4, Amer. Math. Soc., Providence, 1961, 33–49 |
6. |
Calderon C. P., Fabes E. B., Riviere N. M., “Maximal smoothing operators”, Indiana Univ. Math. J., 232:10 (1974), 889–898 |
7. |
Falconer K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990 |
8. |
Federer H., Ziemer C., “The Lebesgue sets of a function whose distribution derivatives are $p$th power summable”, Indiana Univ. Math. J., 22:2 (1972), 139–158 |
9. |
Krotov V. G., “Maximal functions measuring smoothness”, Recent Advances in Harmonic Analysis and Applications in Honor of Konstantin Oskolkov, Springer Proc. Math. Stat., 25, Springer, Berlin, 2013, 197–223 |
10. |
Krotov V. G., Prokhorovich M. A., “Estimates for the exceptional Lebesgue sets of functions from Sobolev classes”, Recent Advances in Harmonic Analysis and Applications in Honor of Konstantin Oskolkov, Springer Proc. Math. Stat., 25, Springer, Berlin, 2013, 225–234 |
11. |
Meyers N. G., “Taylor expansion of Bessel potentials”, Indiana Univ. Math. J., 23:11 (1974), 1043–1049 |
12. |
Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983 |
13. |
Triebel H., Theory of Function Spaces, v. II, Birkhäuser, Basel, 1992 |