|
|
|
Литература
|
|
|
1. |
Albeverio S., Fei S., “Remark on symmetry of stochastic dynamical systems and their conserved quantities”, J. Phys. A, 28 (1995), 6363–6371 |
2. |
Bismut J. M., Mecanique Aleatoire, Lect. Notes Math., 866, Springer, Berlin, 1981 |
3. |
Błaszak M, Domański Z., Sergyeyev A., Szablikowski B., “Integrable quantum Stäckel systems”, Phys. Lett. A, 377:38 (2013), 2564–2572 |
4. |
Bolsinov A. V., Matveev V. S., “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44:4 (2003), 489–506 |
5. |
Borodin A. N., Freidlin M. I., “Fast oscillating random perturbations of dynamical systems with conservation laws”, Ann. Inst. H. Poincaré Probab. Statist., 31:3 (1995), 485–525 |
6. |
Duval C., Valent G., “Quantum integrability of quadratic Killing tensors”, J. Math. Phys., 46:5 (2005), 053516 |
7. |
Fomenko A. T., Bolsinov A. V., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton, 2004 |
8. |
Freidlin M., Weber M., “Random perturbations of dynamical systems and diffusion processes with conservation laws”, Probab. Theory Related Fields, 128:3 (2004), 441–466 |
9. |
Galmarino A. R., “Representation of an isotropic diffusion as a skew product”, Z. Wahrsch. Verw. Gebiete, 1:4 (1963), 359–378 |
10. |
Gitterman M., The Noisy Oscillator: The First Hundred Years, from Einstein Until Now, World Scientific, New York, 2005 |
11. |
Grove K., Karcher H., Ruh E. A., “Group actions and curvature”, Invent. Math., 23 (1974), 31–48 |
12. |
Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Lib., 24, North-Holland, 1981 |
13. |
Jovanovic B., “Symmetries and integrability”, Publ. Inst. Math. (Beograd), 84(98) (2008), 1–36 |
14. |
Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge, 1997 |
15. |
Lázaro-Camí J.-A., Ortega J.-P., “Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations”, Stoch. Dyn., 9:1 (2009), 1–46 |
16. |
Li Xue-Mei, “An averaging principle for a completely integrable stochastic Hamiltonian system”, Nonlinearity, 21:4 (2008), 803–822 |
17. |
Liao M., “A decomposition of Markov processes via group action”, J. Theor. Probab., 22:1 (2009), 164–185 |
18. |
Liouville J., “Note sur l'intégration des équations différentielles de la dynamique”, J. Math. Pures Appl., 20 (1855), 137–138 |
19. |
Markus L., Weerasinghe A., “Stochastic oscillators”, J. Differ. Equ., 71:2 (1988), 288–314 |
20. |
Matveev V. S., “Quantum integrability of the Beltrami–Laplace operator for geodesically equivalent metrics”, Russ. Math. Dokl., 61:2 (2000), 216–219 |
21. |
Misawa T., “Conserved quantities and symmetries related to stochastic dynamical systems”, Ann. Inst. Stat. Math., 51:4 (1999), 779–802 |
22. |
Øksendal B., Stochastic Differential Equations, Springer, Berlin, 2003 |
23. |
Pauwels E. J., Rogers L. C. G., “Skew-product decompositions of Brownian motions”, Contemp. Math., 73 (1988), 237–262 |
24. |
Taylor M., Pseudodifferential Operators, Springer, New York, 1996 |
25. |
Zung N. T., “Torus actions and integrable systems”, Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., Cambridge, 2006, 289–328 |
26. |
Zung N. T., A general approach to the problem of action-angle variables, In preparation; Earlier version: Action-angle variables on Dirac manifolds, arXiv: 1204.3865 |
27. |
Zung N. T., Thien N. T., Physics-like second-order models of financial assets prices, In preparation |