RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika

Fundam. Prikl. Mat., 2022, Volume 24, Issue 2, Pages 197–212 (Mi fpm1931)

First- and second-order framings of Mandelbrot sets and structure of fixed points of quadratic polynomials
V. S. Sekovanov, L. B. Rybina

References

1. Kronover R. M., Fraktaly i khaos: v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000
2. Markushevich A. I., Markushevich L. A., Vvedenie v teoriyu analiticheskikh funktsii, Prosveschenie, M., 1977
3. Minlor Dzh., Golomorfnaya dinamika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000
4. Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993
5. Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28
6. Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Liberkom, M., 2014
7. Sekovanov V. S., “Gladkie mnozhestva Zhyulia”, Fundament. i prikl. matem., 21:4 (2016), 133–150  mathnet
8. Sekovanov V. S., “O nekotorykh diskretnykh nelineinykh dinamicheskikh sistemakh”, Fundament. i prikl. matem., 21:3 (2016), 185–199  mathnet  mathscinet
9. Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Lenand, M., 2016
10. Sekovanov V. S., Elementy teorii diskretnykh dinamicheskikh sistem, Lan, SPb., 2017
11. Sekovanov V. S., Fraktalnaya geometriya. Prepodavanie, zadachi, algoritmy, sinergetika, estetika, prilozheniya, Lan, SPb., 2019
12. Sekovanov V. S., “O mnozhestvakh Zhyulia funktsii, imeyuschikh nepodvizhnye parabolicheskie tochki”, Fundament. i prikl. matem., 23:4 (2021), 163–176  mathnet  mathscinet
13. Sekovanov V. S., Rybina L. B., Berezkina A. E., “O mnozhestvakh Zhyulia funktsii, imeyuschikh parabolicheskuyu nepodvizhnuyu tochku”, Aktualnye problemy prepodavaniya informatsionnykh i estestvenno-nauchnykh distsiplin, KGU, Kostroma, 2018, 144–150
14. Sekovanov V. S., Rybina L. B., Strunkina K. Yu., “Izuchenie obramlenii mnozhestv Mandelbrota polinomov vtoroi stepeni kak sredstvo razvitiya originalnosti myshleniya studentov”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 25:4 (2019), 193–199
15. Sekovanov V. S., Smirnova A. O., “Razvitie gibkosti myshleniya studentov pri izuchenii struktury nepodvizhnykh tochek polinomov kompleksnoi peremennoi”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 22:3 (2016), 189–192
16. Falconer K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley, New York, 1990  zmath
17. Sekovanov V., Ivkov V., Piguzov A., Fateev A., “Performing a multi-stage mathematical and informational task «Building a fractal set with L-systems and information technoloqies» as a means of developing students' creativity”, CEUR Workshop Proceedings, 2016, 204–211


© Steklov Math. Inst. of RAS, 2025