|
|
|
References
|
|
|
1. |
Kronover R. M., Fraktaly i khaos: v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000 |
2. |
Markushevich A. I., Markushevich L. A., Vvedenie v teoriyu analiticheskikh funktsii, Prosveschenie, M., 1977 |
3. |
Minlor Dzh., Golomorfnaya dinamika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000 |
4. |
Paitgen Kh.-O., Rikhter P. Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993 |
5. |
Sekovanov V. S., “O mnozhestvakh Zhyulia nekotorykh ratsionalnykh funktsii”, Vestn. KGU im. N. A. Nekrasova, 18:2 (2012), 23–28 |
6. |
Sekovanov V. S., Elementy teorii fraktalnykh mnozhestv, Liberkom, M., 2014 |
7. |
Sekovanov V. S., “Gladkie mnozhestva Zhyulia”, Fundament. i prikl. matem., 21:4 (2016), 133–150 |
8. |
Sekovanov V. S., “O nekotorykh diskretnykh nelineinykh dinamicheskikh sistemakh”, Fundament. i prikl. matem., 21:3 (2016), 185–199 |
9. |
Sekovanov V. S., Chto takoe fraktalnaya geometriya?, Lenand, M., 2016 |
10. |
Sekovanov V. S., Elementy teorii diskretnykh dinamicheskikh sistem, Lan, SPb., 2017 |
11. |
Sekovanov V. S., Fraktalnaya geometriya. Prepodavanie, zadachi, algoritmy, sinergetika, estetika, prilozheniya, Lan, SPb., 2019 |
12. |
Sekovanov V. S., “O mnozhestvakh Zhyulia funktsii, imeyuschikh nepodvizhnye parabolicheskie tochki”, Fundament. i prikl. matem., 23:4 (2021), 163–176 |
13. |
Sekovanov V. S., Rybina L. B., Berezkina A. E., “O mnozhestvakh Zhyulia funktsii, imeyuschikh parabolicheskuyu nepodvizhnuyu tochku”, Aktualnye problemy prepodavaniya informatsionnykh i estestvenno-nauchnykh distsiplin, KGU, Kostroma, 2018, 144–150 |
14. |
Sekovanov V. S., Rybina L. B., Strunkina K. Yu., “Izuchenie obramlenii mnozhestv Mandelbrota polinomov vtoroi stepeni kak sredstvo razvitiya originalnosti myshleniya studentov”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 25:4 (2019), 193–199 |
15. |
Sekovanov V. S., Smirnova A. O., “Razvitie gibkosti myshleniya studentov pri izuchenii struktury nepodvizhnykh tochek polinomov kompleksnoi peremennoi”, Vestn. Kostrom. gos. un-ta. Ser. Pedagogika. Psikhologiya. Sotsiokinetika, 22:3 (2016), 189–192 |
16. |
Falconer K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley, New York, 1990 |
17. |
Sekovanov V., Ivkov V., Piguzov A., Fateev A., “Performing a multi-stage mathematical and informational task «Building a fractal set with L-systems and information technoloqies» as a means of developing students' creativity”, CEUR Workshop Proceedings, 2016, 204–211 |