RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika

Fundam. Prikl. Mat., 1995, Volume 1, Issue 3, Pages 623–639 (Mi fpm89)

The functional law of the iterated logarithm for associated random fields
A. V. Bulinski

References

1. A. V. Bulinskii, Predelnye teoremy v usloviyakh slaboi zavisimosti, izd-vo MGU, M., 1989
2. A. V. Bulinskii, “Tsentralnaya predelnaya teorema dlya polei drobovogo shuma”, Problemy teorii veroyatnostnykh raspredelenii, XI, Zapiski nauchn. seminarov LOMI, 177, ed. V. N. Sudakova, 1989, 28–36  mathnet  mathscinet
3. A. V. Bulinskii, “Analogi otsenki Berri–Esseena dlya polei s FKG-neravenstvami”, Teoriya veroyatn. i ee primen., 37:4 (1992), 768–769
4. A. V. Bulinskii, “Skorost skhodimosti v tsentralnoi predelnoi teoreme dlya polei assotsiirovannykh velichin”, Teoriya veroyatn. i ee primen., 40:1 (1995), 165–174  mathnet  mathscinet  zmath
5. V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972  mathscinet
6. B. von Bar, “Multi-dimensional integral limit theorem”, Ark. Math., 7 (1967), 71–88  crossref  mathscinet  zmath
7. R. E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models, ed. Holt Rinehart, Winston, 1975  mathscinet
8. I. Berkes, “The functional law of the iterated logarithm for dependent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 26 (1973), 245–258  crossref  mathscinet  zmath
9. T. Birkel, “A note on the strong law of large numbers for positively dependent random variables”, Statist. Probab. Lett., 7 (1987), 17–20  crossref  mathscinet
10. A. V. Bulinski, “On Berry–Esseen estimate analogues for associated random fields”, New Trends in Probab. and Statist., Stability Problems for Stoch. Models, ed. V. M. Zolotarev, TVP, Moscow, 1994, 9–20  zmath
11. A. V. Bulinski, “On the convergence rates in the CLT for positively and negatively dependent random fields”, Proc. Kolmogorov Semester, Int. Euler Math. Inst. (St. Petersburg, March 1993), Gordon and Breach, 1994, 1–12  mathscinet
12. A. V. Bulinski, M. S. Keane, Invariance principle for associated random fields, Stability Problems for Stoch. Models, ed. V. M. Zolotarev
13. J. Chover, “On Strassen version of the loglog law”, Z. Wahrscheinlichkeitstheorie verw. Geb., 8 (1967), 83–90  crossref  mathscinet  zmath
14. J. T. Cox, G. Grimmett, “Central limit theorem for associated random variables and the percolation model”, Ann. Probab., 12 (1984), 514–528  crossref  mathscinet  zmath
15. A. R. Dabrowski, H. Dehling, “A Berry–Esseen theorem and a functional law of the iterated logarithm for weakly associated random vectors”, Stoch. Proc. Appl., 30 (1988), 277–289  crossref  mathscinet  zmath
16. A. R. Dabrowski, A. Jakubovski, “Stable limits for associated random variables”, Ann. Probab., 22 (1994), 514–531  crossref  mathscinet
17. P. Doukhan, Mixing: properties and examples, Lecture Notes in Statistics, 85, Springer Verlag, 1995  mathscinet
18. J. Esary, F. Proschan, D. Walkup, “Association of random variables with applications”, Ann. Math. Statist., 38 (1967), 1466–1474  crossref  mathscinet  zmath
19. C. Fortuin, P. Kasteleyn, J. Ginibre, “Correlation inequalities on some partially ordered sets”, Commun. Math. Phys., 22 (1971), 89–103  crossref  mathscinet  zmath  adsnasa
20. T. E. Harris, “A lower bound for the critical probability in a certain percolation process”, Proc. Camb. Phil. Soc., 159, 1960, 13–20  mathscinet
21. E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37 (1966), 1137–1153  crossref  mathscinet  zmath
22. C. M. Newman, “A general central limit theorem for FKG systems”, Commun. Math. Phys., 91 (1983), 75–80  crossref  mathscinet  zmath  adsnasa
23. C. M. Newman, “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statist. and Probab., ed. Y. L. Tong, Hayward, 1984, 127–140  mathscinet
24. M. Peligrad, Qi-Man Shao, “Self-normalized central limit theorem for sums of weakly dependent random variables”, J. Theor. Probab., 7 (1994), 309–338  crossref  mathscinet  zmath
25. S. T. Rachev, Huang Xin, “Test for association of random variables in the domain of attraction of multivariate law”, Probab. and Math. Statist., 14 (1993), 125–141  mathscinet  zmath
26. V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrscheinlichkeitstheorie verw. Geb., 3 (1964), 211–228  crossref  mathscinet
27. Ch. Suquet, “Introduction a association”, Pub. IRMA. Lille, 34:XIII (1994), 1–20
28. M. J. Wichura, “Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments”, Ann. Probab., 1 (1973), 273–296  mathscinet


© Steklov Math. Inst. of RAS, 2025