|
|
|
Список литературы
|
|
|
1. |
А. В. Булинский, Предельные теоремы в условиях слабой зависимости, изд-во МГУ, М., 1989 |
2. |
А. В. Булинский, “Центральная предельная теорема для полей дробового шума”, Проблемы теории вероятностных распределений, XI, Записки научн. семинаров ЛОМИ, 177, ред. В. Н. Судакова, 1989, 28–36 |
3. |
А. В. Булинский, “Аналоги оценки Берри–Эссеена для полей с FKG-неравенствами”, Теория вероятн. и ее примен., 37:4 (1992), 768–769 |
4. |
А. В. Булинский, “Скорость сходимости в центральной предельной теореме для полей ассоциированных величин”, Теория вероятн. и ее примен., 40:1 (1995), 165–174 |
5. |
В. В. Петров, Суммы независимых случайных величин, Наука, М., 1972 |
6. |
B. von Bar, “Multi-dimensional integral limit theorem”, Ark. Math., 7 (1967), 71–88 |
7. |
R. E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models, ed. Holt Rinehart, Winston, 1975 |
8. |
I. Berkes, “The functional law of the iterated logarithm for dependent random variables”, Z. Wahrscheinlichkeitstheorie verw. Geb., 26 (1973), 245–258 |
9. |
T. Birkel, “A note on the strong law of large numbers for positively dependent random variables”, Statist. Probab. Lett., 7 (1987), 17–20 |
10. |
A. V. Bulinski, “On Berry–Esseen estimate analogues for associated random fields”, New Trends in Probab. and Statist., Stability Problems for Stoch. Models, ed. V. M. Zolotarev, TVP, Moscow, 1994, 9–20 |
11. |
A. V. Bulinski, “On the convergence rates in the CLT for positively and negatively dependent random fields”, Proc. Kolmogorov Semester, Int. Euler Math. Inst. (St. Petersburg, March 1993), Gordon and Breach, 1994, 1–12 |
12. |
A. V. Bulinski, M. S. Keane, Invariance principle for associated random fields, Stability Problems for Stoch. Models, ed. V. M. Zolotarev |
13. |
J. Chover, “On Strassen version of the loglog law”, Z. Wahrscheinlichkeitstheorie verw. Geb., 8 (1967), 83–90 |
14. |
J. T. Cox, G. Grimmett, “Central limit theorem for associated random variables and the percolation model”, Ann. Probab., 12 (1984), 514–528 |
15. |
A. R. Dabrowski, H. Dehling, “A Berry–Esseen theorem and a functional law of the iterated logarithm for weakly associated random vectors”, Stoch. Proc. Appl., 30 (1988), 277–289 |
16. |
A. R. Dabrowski, A. Jakubovski, “Stable limits for associated random variables”, Ann. Probab., 22 (1994), 514–531 |
17. |
P. Doukhan, Mixing: properties and examples, Lecture Notes in Statistics, 85, Springer Verlag, 1995 |
18. |
J. Esary, F. Proschan, D. Walkup, “Association of random variables with applications”, Ann. Math. Statist., 38 (1967), 1466–1474 |
19. |
C. Fortuin, P. Kasteleyn, J. Ginibre, “Correlation inequalities on some partially ordered sets”, Commun. Math. Phys., 22 (1971), 89–103 |
20. |
T. E. Harris, “A lower bound for the critical probability in a certain percolation process”, Proc. Camb. Phil. Soc., 159, 1960, 13–20 |
21. |
E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37 (1966), 1137–1153 |
22. |
C. M. Newman, “A general central limit theorem for FKG systems”, Commun. Math. Phys., 91 (1983), 75–80 |
23. |
C. M. Newman, “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statist. and Probab., ed. Y. L. Tong, Hayward, 1984, 127–140 |
24. |
M. Peligrad, Qi-Man Shao, “Self-normalized central limit theorem for sums of weakly dependent random variables”, J. Theor. Probab., 7 (1994), 309–338 |
25. |
S. T. Rachev, Huang Xin, “Test for association of random variables in the domain of attraction of multivariate law”, Probab. and Math. Statist., 14 (1993), 125–141 |
26. |
V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrscheinlichkeitstheorie verw. Geb., 3 (1964), 211–228 |
27. |
Ch. Suquet, “Introduction a association”, Pub. IRMA. Lille, 34:XIII (1994), 1–20 |
28. |
M. J. Wichura, “Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments”, Ann. Probab., 1 (1973), 273–296 |