|
|
|
Литература
|
|
|
1. |
Hill N. J., Lal T. N., Schroder M., Hinterberger T., Wilhelm B., Nijboer F., Mochty U., Widman G., Elger C., Scholkopf B., Kubler A., Birbaumer N., “Classifying EEG and ECoG signals without subject training for fast BCI implementation: Comparison of nonparalyzed and completely paralyzed subjects”, IEEE T. Neur. Sys. Reh., 14:2 (2006), 183–186 |
2. |
Sakoe H., Chiba S., “A dynamic programming approach to continuous speech recognition”, 7th Congress (International) on Acoustics Proceedings, v. 3, 1971, 65–69 |
3. |
Aghabozorgi S., Ali S. S., Wah T. Y., “Time-series clustering — a decade review”, Inform. Syst., 53 (2015), 16–38 |
4. |
Warrenliao T., “Clustering of time series data — a survey”, Pattern Recogn., 38:11 (2005), 1857–1874 |
5. |
Hautamaki V., Nykanen P., Franti P., “Time-series clustering by approximate prototypes”, 19th Conference (International) on Pattern Recognition Proceedings, No D, 2008, 1–4 |
6. |
Faloutsos C., Ranganathan M., Manolopoulos Y., “Fast subsequence matching in time-series databases”, SIGMOD Rec., 23:2 (1994), 419–429 |
7. |
Basalto N., Bellotti R., Carlo F. D., Facchi P., Pascazio S., “Hausdorff clustering of financial time series”, Physica A, 379:2 (2007), 635–644 |
8. |
Gorelick L., Blank M., Shechtman E., Irani M., Basri R., “Actions as space-time shapes”, IEEE T. Pattern Anal., 29:12 (2007), 2247–2253 |
9. |
Smyth P., “Clustering sequences with hidden Markov models”, Adv. Neural In., 9 (1997), 648–654 |
10. |
Banerjee A., Ghosh J., “Clickstream clustering using weighted longest common subsequences”, Workshop on Web Mining, SIAM Conference on Data Mining Proceedings, 2001, 33–40 |
11. |
Aach J., Church G.M., “Aligning gene expression time series with time warping algorithms”, Bioinformatics, 17:6 (2001), 495–508 |
12. |
Yi B. K., Faloutsos C., “Fast time sequence indexing for arbitrary $\mathcal{L}_p$ norms”, 26th Conference (International) on Very Large Data Bases Proceedings, 2000, 385–394 |
13. |
Goncharov A. V., Strijov V. V., “Analysis of dissimilarity set between time series”, Computational Mathematics Modeling, 29:3 (2018), 359–366 |
14. |
Alon J., Athitsos V., Sclaroff S., “Online and offline character recognition using alignment to prototypes”, 8th Conference (International) on Document Analysis and Recognition, v. 2, 2005, 839–843 |
15. |
Гончаров А. В., Выравнивания декартовых произведений упорядоченных множеств mDTW. Программная реализация алгоритма, https://github.com/Intelligent-Systems-Phystech/PhDThesis/tree/master/Goncharov2019/MatrixDTW/code, 2019 [Goncharov A. V., Alignment of Ordered Set Cartesian Product mDTW. Software implementation of the algorithm, 2019 (accessed December 27, 2019)] |