RUS  ENG
Full version
JOURNALS // Informatika i Ee Primeneniya [Informatics and its Applications]

Inform. Primen., 2021, Volume 15, Issue 1, Pages 42–49 (Mi ia710)

Variational deep learning model optimization with complexity control
O. S. Grebenkova, O. Yu. Bakhteev, V. V. Strijov

References

1. Graves A., “Practical variational inference for neural networks”, Advances in neural information processing systems, 24, eds. J. Shawe-Taylor, R. Zemel, P. Barlett, et al., ACM, 2011, 2348–2356
2. Ha D., Dai A. M., Le Q. V., HyperNetworks, 2016, 29 pp., arXiv: 1609.09106 [cs.LG] (accessed January 25, 2021)
3. Kuznetsov M. P., Tokmakova A. A., Strijov V. V., “Analytic and stochastic methods of structure parameter estimation”, Informatica, 27 (2016), 607–624  crossref  zmath  elib
4. Strijov V. V., O. Yu. Bakhteev, “Deep learning model selection of suboptimal complexity”, Automat. Rem. Contr., 79:8 (2018), 1474–1488  mathnet  crossref  zmath
5. Saxena S., Verbeek J., “Convolutional neural fabrics”, Advances in neural information processing systems, 29, eds. D. Lee, M. Sugiyama, U. Luxburg, et al., ACM, 2016, 4053–4061
6. Xie S., Zheng H., Liu C., Lin L., SNAS: Stochastic neural architecture search, 2019, 17 pp., arXiv: 1812.09926 [cs.LG] (accessed January 25, 2021)
7. Wu B., Dai X., Zhang P., Wang Y., Sun F., Wu Y., Tian Y., Vajda P., Jia Y., Keutzer K., “FBNet: Hardware-aware efficient convnet design via differentiable neural architecture search”, IEEE/CVF Conference on Computer Vision and Pattern Recognition, v. 1, IEEE, 2019, 10726–10734
8. Lorraine J., Duvenaud D., Stochastic hyperparameter optimization through hypernetworks, 2018, 9 pp., arXiv: 1802.09419
9. LeCun Y., Cortes C., Burges C., The MNIST dataset of handwritten digits, 1998 http://yann.lecun.com/exdb/ (accessed January 25, 2021)


© Steklov Math. Inst. of RAS, 2024