RUS  ENG
Full version
JOURNALS // Informatika i Ee Primeneniya [Informatics and its Applications]

Inform. Primen., 2021, Volume 15, Issue 2, Pages 20–25 (Mi ia723)

On one nonstationary service model with catastrophes and heavy tails
A. I. Zeifman, Ya. A. Satin, I. A. Kovalev

References

1. Marin A., Rossi S., “A queueing model that works only on the biggest jobs”, 16th European Computer Performance Engineering Workshop Revised Selected Papers, Lecture notes in computer science ser., 12039, eds. M. Gribaudo, M. Iacono, T. Phung-Duc, R. Razumchik, Springer, 2020, 118–132  crossref
2. Zeifman A. I., Razumchik R. V., Satin Y. A., Kovalev I. A., “Ergodicity bounds for the Markovian queue with time-varying transition intensities, batch arrivals and one queue skipping policy”, Appl. Math. Comput., 395, 125846, 11 pp.  zmath
3. Zeifman A., Y. Satin, I. Kovalev, R. Razumchik, V. Korolev, “Facilitating numerical solutions of inhomogeneous continuous time Markov chains using ergodicity bounds obtained with logarithmic norm method”, Mathematics, 9:1 (2021), 42, 20 pp.  crossref
4. Zeifman A., Y. Satin, V. Korolev, S. Shorgin, “On truncations for weakly ergodic inhomogeneous birth and death processes”, Int. J. Appl. Math. Comp., 24:3 (2014), 503–518  zmath  elib
5. Zeifman A. I., A. V. Korotysheva, V. Y. Korolev, Ya. A. Satin, “Truncation bounds for approximations of inhomogeneous continuous-time Markov chains”, Theor. Probab. Appl., 61:3 (2017), 513–520  mathnet  zmath


© Steklov Math. Inst. of RAS, 2025