RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и её применения

Информ. и её примен., 2021, том 15, выпуск 2, страницы 30–35 (Mi ia725)

Анализ несмещенной оценки среднеквадратичного риска метода блочной пороговой обработки
О. В. Шестаков

Литература

1. Donoho D., Johnstone I. M., “Ideal spatial adaptation via wavelet shrinkage”, Biometrika, 81:3 (1994), 425–455  crossref  zmath
2. Hall P., Kerkyacharian G., Picard D., “On the minimax optimality of block thresholded wavelet estimators”, Stat. Sinica, 9 (1999), 33–50
3. Cai T., “Adaptive wavelet estimation: A block thresholding and oracle inequality approach”, Ann. Stat., 28:3 (1999), 898–924
4. Stein C., “Estimation of the mean of a multivariate normal distribution”, Ann. Stat., 9:6 (1981), 1135–1151  crossref  zmath
5. Шестаков О. В., “Асимптотическая нормальность оценки риска пороговой обработки вейвлет-коэффициентов при выборе адаптивного порога”, Докл. Акад. наук, 445:5 (2012), 513–515  zmath; Shestakov, O. V., “Asymptotic normality of adaptive wavelet thresholding risk estimation”, Dokl. Math., 86:1 (2012), 556–558  crossref  zmath  elib
6. Shestakov O. V., “On the strong consistency of the adaptive risk estimator for wavelet thresholding”, J. Math. Sci., 214:1 (2016), 115–118  crossref  zmath  elib
7. Шестаков О. В., “Статистические свойства метода подавления шума, основанного на стабилизированной жесткой пороговой обработке”, Информатика и её применения, 10:2 (2016), 65–69  mathnet [Shestakov O. V., “Statistical properties of the denoising method based on the stabilized hard thresholding”, Informatika i ee Primeneniya — Inform. Appl., 10:2 (2016), 65–69]
8. Попенова П. С., Шестаков О. В., “Анализ статистических свойств метода гибридной пороговой обработки”, Вестн. Тверск. ун-та. Сер.: Прикладная математика, 2019, № 1, 15–22 [Popenova P. S., O. V. Shestakov, “Analysis of statistical properties of the hybrid thresholding technique”, Bull. of the Tverskoy State University. Ser. Appl. Math., 2019, no. 1, 15–22]
9. Donoho D., Johnstone I. M., “Adapting to unknown smoothness via wavelet shrinkage”, J. Am. Stat. Assoc., 90 (1995), 1200–1224  crossref  zmath
10. Donoho D., Johnstone I. M., “Minimax estimation via wavelet shrinkage”, Ann. Stat., 26:3 (1998), 879–921  crossref  zmath
11. Gao H.-Y., “Wavelet shrinkage denoising using the non-negative garrote”, J. Comput. Graph. Stat., 7:4 (1998), 469–488
12. Poornachandra S., Kumaravel N., Saravanan T. K., Somaskandan R., “WaveShrink using modified hyper-shrinkage function”, 27th Annual Conference (International) of the IEEE Engineering in Medicine and Biology Society Proceedings, IEEE, Piscataway, NJ, USA, 2005, 30–32
13. Lin Y., Cai J., “A new threshold function for signal denoising based on wavelet transform”, Conference (International) on Measuring Technology and Mechatronics Automation Proceedings, IEEE, Piscataway, NJ, USA, 2010, 200–203
14. Huang H.-C., Lee T. C. M., “Stabilized thresholding with generalized sure for image denoising”, 17th Conference (International) on Image Processing Proceedings, IEEE, Piscataway, NJ, USA, 2010, 1881–1884
15. He C., Xing J., Li J., Yang Q., Wang R., “A new wavelet thresholding function based on hyperbolic tangent function”, Math. Probl. Eng., 2015 (2015), 528656  zmath  elib
16. Zhao R.-M., Cui H.-M., “Improved threshold denoising method based on wavelet transform”, 7th Conference (International) on Modelling, Identification and Control Proceedings, IEEE, Piscataway, NJ, USA, 2015, 7409352, 4 pp.  crossref  scopus
17. Mallat S., A wavelet tour of signal processing, Academic Press, New York, NY, USA, 1999, 857 pp.  zmath


© МИАН, 2025