|
|
|
Литература
|
|
|
1. |
Larsonneur C., Neural machine translation: From commodity to commons?, When translation goes digital: Case studies and critical reflections, eds. R. Desjardins, C. Larsonneur, Ph. Lacour, Palgrave Macmillan, Cham, Switzerland, 2021, 257–280 |
2. |
Davenport C., Google Translate processes 143 billion words every day, Android Police, 2018 https://www.androidpolice.com/2018/10/09/google-translate-processes-143-billion-words-every-day (accessed May 5, 2021) |
3. |
J. Moorkens, Sh. Castilho, F. Gaspari, S. Doherty (eds.), Translation quality assessment: From principles to practice, v. 1, Machine translation: Technologies and applications ser., Springer International Publishing, Cham, Switzerland, 2018, 292 pp. |
4. |
Specia L., Scarton C., Paetzold G. H., Quality estimation for machine translation, Synthesis lectures on human language technologies ser., Morgan & Claypool, London, 2018, 162 pp. |
5. |
Bittner H., Evaluating the evaluator: A novel perspective on translation quality assessment, Routledge, New York, NY, USA, 2020, 282 pp. |
6. |
Papineni K., Roukos S., Ward T., Zhu W. J., “BLEU: A method for automatic evaluation of machine translation”, 40th Annual Meeting on Association for Computational Linguistics Proceedings, Association for Computational Linguistics, Philadelphia, PA, USA, 2002, 311–318 |
7. |
Рычихин А. К., “О методах оценки качества машинного перевода”, Системы и средства информатики, 29:4 (2019), 106–118 [Rychikhin A. K., “On methods of machine translation quality assessment”, Sistemy i Sredstva Informatiki — Systems and Means of Informatics, 29:4 (2019), 106–118] |
8. |
Козина А. В., Черепков Е. А., Белов Ю. С., “Автоматические метрики оценки качества машинного перевода”, Системный администратор, 2019, № 11, 84–87 [Kozina A. V., E. A. Cherepkov, Yu. S. Belov, “Automatic metrics for machine translation evaluation”, System Administrator, 2019, no. 11, 84–87] |
9. |
Banerjee S., Lavie A., “METEOR: An automatic metric for MT evaluation with improved correlation with human judgments”, Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization at the 43rd Annual Meeting of the Association of Computational Linguistics Proceedings, Association of Computational Linguistics, Ann Arbor, MI, USA, 2005, 65–72 |
10. |
Koehn Ph., Neural machine translation, Cambridge University Press, New York, NY, USA, 2020, 394 pp. |
11. |
Popović M., “chrF: Character $n$-gram F-score for automatic MT evaluation”, 10th Workshop on Statistical Machine Translation Proceedings, Association for Computational Linguistics, Lisboa, Portugal, 2015, 392–395 |
12. |
Popović M., “chrF deconstructed: $\beta$ parameters and $n$-gram weights”, 1st Conference on Machine Translation Proceedings, v. 2, Association for Computational Linguistics, Berlin, Germany, 2016, 499–504 |
13. |
Chi-kiu Lo, “MEANT 2.0: Accurate semantic MT evaluation for any output language”, Conference on Machine Translation Proceedings, v. 2, Association for Computational Linguistics, Copenhagen, Denmark, 2017, 589–597 |
14. |
Stanojević M., Sima'an K., “BEER: BEtter evaluation as ranking”, 9th Workshop on Statistical Machine Translation Proceedings, Association for Computational Linguistics, Baltimore, MD, USA, 2014, 414–419 |
15. |
Stanojević M., Sima'an K., “Evaluating MT systems with BEER”, Prague Bulletin Mathematical Linguistics, 104 (2015), 17–26 |
16. |
Sellam T., Das D., Parikh A. P., BLEURT: Learning robust metrics for text generation, 9 Apr 2020, arXiv: 2004.04696 (accessed May 5, 2021) |
17. |
Инькова О. Ю., “Надкорпусная база данных как инструмент изучения формальной вариативности коннекторов”, Компьютерная лингвистика и интеллектуальные технологии, 17(24), РГГУ, М., 2018, 240–253 [Inkova O. Yu., “Supracorpora database as an instrument of the study of the formal variability of connectives”, Computer Linguistic and Intellectual Technologies, 17(24), M., 2018, 240–253] |
18. |
Castilho Sh., Doherty S, Gaspari F., Moorkens J., “Approaches to human and machine translation quality assessment”, Translation quality assessment: From principles to practice, eds. J. Moorkens, Sh. Castilho, F. Gaspari, S. Doherty, Springer, Cham, Switzerland, 2018, 9–38 |
19. |
Likert R., “A technique for the measurement of attitudes”, Arch. Psychol., 140 (1932), 1–55 |
20. |
Fleiss J. L., “Measuring nominal scale agreement among many raters”, Psychol. Bull., 76:5 (1971), 378–382 |
21. |
Shterionov D., Superbo R., Nagle P., et al., “Human versus automatic quality evaluation of NMT and PBSMT”, Machine Translation, 32 (2018), 217–235 |
22. |
Castilho S., Moorkens J., Gaspari F., et al., “Evaluating MT for massive open online courses. A multifaceted comparison between PBSMT and NMT systems”, Machine Translation, 32 (2018), 255–278 |
23. |
Popovic M., “Error classification and analysis for machine translation quality assessment”, Translation quality assessment: From principles to practice, 2018, 129–158, Springer, Cham, Switzerland |
24. |
Lommel A., “Metrics for translation quality assessment: A case for standardizing error typologies”, Translation quality assessment: From principles to practice, eds. J. Moorkens, Sh. Castilho, F. Gaspari, S. Doherty, Springer, Cham, Switzerland, 2018, 109–127 |
25. |
Klubička F., Toral A., Sánchez-Cartagena V. M., “Quantitative fine-grained human evaluation of machine translation systems: A case study on English to Croatian”, Machine Translation, 32 (2018), 195–215 |
26. |
Haque R., Hasanuzzaman M., Way A., “Analysing terminology translation errors in statistical and neural machine translation”, Machine Translation, 34 (2020), 149–195 |
27. |
Vilar D., Xu J., D'Haro L., Ney H., “Error analysis of statistical machine translation output”, 5th Conference (International) on Language Resources and Evaluation Proceedings, European Language Resources Association, Genoa, Italy, 2006, 697–702 |
28. |
Гончаров А. А., Бунтман Н. В., Нуриев В. А., “Ошибки в машинном переводе: проблемы классификации”, Системы и средства информатики, 29:3 (2019), 92–103 [Goncharov A. A., N. V. Buntman, V. A. Nuriev, “Machine translation errors: Problems of classification”, Sistemy i Sredstva Informatiki — Systems and Means of Informatics, 29:3 (2019), 92–103] |
29. |
Calixto I., Liu Q., “An error analysis for image-based multi-modal neural machine translation”, Machine Translation, 33 (2019), 155–177 |