|
|
|
Список литературы
|
|
|
1. |
Gutin G., Punnen A., The traveling salesman problem and its variations, Springer, Boston, 2007 |
2. |
Toth P., Vigo D., Vehicle routing: problems, methods, and applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014 |
3. |
Гимади Э. Х., Хачай М. Ю., Экстремальные задачи на множествах перестановок, УМЦ УПИ, Екатеринбург, 2016 [Gimadi E. Kh., Khachai M. Yu., Extreme problems on sets of permutations, UMC UPI, Yekaterinburg, 2016] |
4. |
Ченцов А. Г., Ченцов П. А., “К вопросу об оптимизации точки старта в задаче маршрутизации с ограничениями”, Известия Института математики и информатики Удмуртского государственного университета, 55 (2020), 135–154 [Chentsov A. G., Chentsov P. A., “To the question of optimization of the starting point in the routing problem with restrictions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 135–154 (in Russian) ] |
5. |
Beresneva E., Avdoshin S., “Analysis of mathematical formulations of capacitated vehicle routing problem and methods for their solution”, Proceedings of the Institute for System Programming of the RAS, 30:3 (2018), 233–250 |
6. |
Atyabi A., Powers D. M. W., “Review of classical and heuristic-based navigation and path planning approaches”, International Journal of Advancements in Computing Technology, 5 (2013), 1–14 |
7. |
Yang L., Qi J., Song D., Xiao J., Han J., Xia Y., “Survey of robot 3D path planning algorithms”, Journal of Control Science and Engineering, 2016 (2016), 7426913 |
8. |
Injarapu A. S. H. H. V., Gawre S. K., “A survey of autonomous mobile robot path planning approaches”, International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), 2017, 624–628 |
9. |
Youakim D., Ridao P., “Motion planning survey for autonomous mobile manipulators underwater manipulator case study”, Robotics and Autonomous Systems, 107 (2018), 20–44 |
10. |
Dijkstra E. W., “A note on two problems in connexion with graphs”, Numerische mathematik, 1:1 (1959), 269–271 |
11. |
Floyd R. W., “Algorithm 97: Shortest path”, Communications of the ACM, 5:6 (1962), 345 |
12. |
Warshall S., “A theorem on boolean matrices”, Journal of the ACM, 9:1 (1962), 11–12 |
13. |
Matthews J., “Basic A* pathfinding made simple”, AI Game Programming Wisdom, Charles River Media, Boston, 2002, 105–113 |
14. |
Stentz A., “Optimal and efficient path planning for partially-known environments”, Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, 3310–3317 |
15. |
Kunz T., Reiser U., Stilman M., Verl A., “Real-time path planning for a robot arm in changing environments”, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, 5906–5911 |
16. |
Веремей Е. И., Сотникова М. В., “Алгоритмы оптимизации маршрутов движения с учетом погодных условий”, International Journal of Open Information Technologies, 4:3 (2016), 55–61 http://injoit.org/index.php/j1/article/view/247/222 [Veremei E. I., Sotnikova M. V., “Optimal routing based on weather forecast”, International Journal of Open Information Technologies, 4:3 (2016), 55–61 (in Russian)] |
17. |
Shin Y. W., Abebe M., Noh Y., Lee S., Lee I., Kim D., Bae J., Kim K. C., “Near-optimal weather routing by using improved A* algorithm”, Applied Sciences, 10:17 (2020), 6010 |
18. |
Pennino S., Gaglione S., Innac A., Piscopo V., Scamardella A., “Development of a new ship adaptive weather routing model based on seakeeping analysis and optimization”, Journal of Marine Science and Engineering, 8:4 (2020), 270 |
19. |
El Khaili M., “Path planning in a dynamic environment”, International Journal of Advanced Computer Science and Applications, 5:8 (2014), 86–92 |
20. |
Сарапулов А. В., “Методы решения задачи построения траектории для беспилотного летательного аппарата в динамической среде”, Ракетно-космическая техника, 1:2(10) (2017), 92–99 [Sarapulov A. V., “Methods for solving the problem of constructing a trajectory for an unmanned aerial vehicle in a dynamic environment”, Raketno-kosmicheskaya Tekhnika, 1:2(10) (2017), 92–99 (in Russian) ] |
21. |
Vemula A., Muelling K., Oh J., Path planning in dynamic environments with adaptive dimensionality, 2016, arXiv: 1605.06853 [cs.RO] |
22. |
Gochev K., Cohen B., Butzke J., Safonova A., Likhachev M., “Path planning with adaptive dimensionality”, The Fourth International Symposium on Combinatorial Search (SoCS-2011), 2011 https://repository.upenn.edu/hms/175 |
23. |
Jia D., Hu C., Qin K., Cui X., “Planar waypoint generation and path finding in dynamic environment”, International Conference on Identification, Information and Knowledge in the Internet of Things, 2014, 206–211 |
24. |
Zhu W., Jia D., Wan H., Yang T., Hu C., Qin K., Cui X., “Waypoint graph based fast pathfinding in dynamic environment”, International Journal of Distributed Sensor Networks, 11:8 (2015), 238727 |
25. |
Ng M.-K., Chong Y.-W., Ko K.-m., Park Y.-H., Leau Y.-B., “Adaptive path finding algorithm in dynamic environment for warehouse robot”, Neural Computing and Applications, 32 (2020), 13155–13171 |
26. |
Masehian E., Katebi Y., “Robot motion planning in dynamic environments with moving obstacles and target”, World Academy of Science, Engineering and Technology, 29 (2007), 107–112 |
27. |
Du Toit N. E., Burdick J. W., “Robot motion planning in dynamic, uncertain environments”, IEEE Transactions on Robotics, 28:1 (2012), 101–115 |
28. |
Abiyev R. H., Akkaya N., Aytac E., “Navigation of mobile robot in dynamic environments”, 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012, 480–484 |
29. |
Гилимьянов Р. Ф., Рапопорт Л. Б., “Метод деформации пути в задачах планирования движения роботов при наличии препятствий”, Проблемы управления, 2012, № 1, 70–76 ; Gilimyanov R. F., Rapoport L. B., “Path deformation method for robot motion planning problems in the presence of obstacles”, Automation and Remote Control, 74:12 (2013), 2163–2172 |
30. |
Бычков И. В., Кензин М. Ю., Максимкин Н. Н., “Двухуровневый эволюционный подход к маршрутизации группы подводных роботов в условиях периодической ротации состава”, Труды СПИИРАН, 18:2 (2019), 267–301 [Bychkov I., Kenzin M., Maksimkin N., “Two-level evolutionary approach to persistent surveillance for multiple underwater vehicles with energy constraints”, SPIIRAS Proceedings, 18:2 (2019), 267–301 (in Russian) ] |
31. |
Ulyanov S., Bychkov I., Maksimkin N., “Event-based path-planning and path-following in unknown environments for underactuated autonomous underwater vehicles”, Applied Sciences, 10:21 (2020), 7894 |
32. |
Гэн К., Чулин Н. А., “Алгоритм наведения движения для квадрокоптера с возможностью облета препятствий и отслеживания запланированного маршрута на основе управления нормальным ускорением”, Проблемы современной науки и образования, 2016, № 31(73), 6–28 [Geng K., Chulin N. A., “Algorithm guidance for movement with possibility of quadcopters avoiding obstacles and tracking planned route based on the normal acceleration controlling”, Problemy Sovremennoi Nauki i Obrazovaniya, 2016, no. 31(73), 6–28 (in Russian)] |
33. |
Казаков А. Л., Лемперт А. А., “Об одном подходе к решению задач оптимизации, возникающих в транспортной логистике”, Автоматика и телемеханика, 2011, № 7, 50–57 ; Kazakov A. L., Lempert A. A., “An approach to optimization in transport logistics”, Automation and Remote Control, 72:7 (2011), 1398–1404 |
34. |
Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, т. 3, Излучение. Волны. Кванты, Эдиториал УРСС, М., 2004; Feynman R. P., Leighton R. B., Sands M., Feynman lectures on physics, v. 3, Quantum mechanics, Addison Wesley, 1971 |
35. |
Cassel K. W., Variational methods with applications in science and engineering, Cambridge University Press, Cambridge, 2013 |
36. |
Боровских А. В., “Двумерное уравнение эйконала”, Сибирский математический журнал, 47:5 (2006), 993–1018 ; Borovskikh A. V., “The two-dimensional eikonal equation”, Siberian Mathematical Journal, 47:5 (2006), 813–834 |
37. |
Borovskikh A. V., “Eikonal equation for anisotropic media”, Journal of Mathematical Sciences, 197 (2014), 248–289 |
38. |
Кабанихин С. И., Криворотько О. И., “Численное решение уравнения эйконала”, Сибирские электронные математические известия, 10 (2013), 28–34 [Kabanikhin S. I., Krivorotko O. I., “Numerical solution eikonal equation”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 10 (2013), 28–34 (in Russian) ] |