RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta

Izv. IMI UdGU, 2024, Volume 63, Pages 114–131 (Mi iimi465)

On application of Gaussian kernels and Laplace functions combined with Kolmogorov's theorem for approximation of functions of several variables
A. V. Chernov

References

1. Chernov A.V., “Gaussian functions combined with Kolmogorov’s theorem as applied to approximation of functions of several variables”, Computational Mathematics and Mathematical Physics, 60:5 (2020), 766–782  mathnet  crossref  crossref  mathscinet  zmath  adsnasa
2. Kolmogorov A.N., “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, Doklady Akademii Nauk SSSR, 114:5 (1957), 953–956 (in Russian)  mathnet  mathnet  zmath
3. Sprecher D.A., “On the structure of continuous functions of several variables”, Transactions of the American Mathematical Society, 115 (1965), 340–355  crossref  mathscinet  zmath
4. Golubkov A.Yu., “The tracing of external and internal representation functions of continuous functions of several variables by superposition of continuous functions of one variable”, Fundamental’naya i Prikladnaya Matematika, 8:1 (2002), 27–38 (in Russian)  mathnet  mathnet  mathscinet  zmath
5. Butyrsky Eu.Yu., Kuvaldin I.A., Chalkin V.P., “Multidimensional functions’ approximation”, Nauchnoe Priborostroenie, 20:2 (2010), 82–92 (in Russian)  crossref  elib
6. Chernov A.V., “On the application of Gaussian functions for discretization of optimal control problems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 27:4 (2017), 558–575 (in Russian)  mathnet  crossref  mathscinet  zmath
7. Chernov A.V., “On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral”, Computational Mathematics and Mathematical Physics, 62:4 (2022), 564–580  mathnet  crossref  mathscinet  zmath  adsnasa
8. Chernov A.V., “On monotone approximation of piecewise continuous monotone functions with the help of translations and dilations of the Laplace integral”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 61 (2023), 187–205 (in Russian)  mathnet  crossref  zmath
9. Maz’ya V., Schmidt G., Approximate approximations, American Mathematical Society, Providence, RI, 2007  crossref  mathscinet  zmath
10. Riemenschneider S.D., Sivakumar N., “Cardinal interpolation by Gaussian functions: A survey”, The Journal of Analysis, 8 (2000), 157–178  mathscinet  zmath
11. Luh Lin-Tian, “The shape parameter in the Gaussian function”, Computers and Mathematics with Applications, 63:3 (2012), 687–694  crossref  mathscinet  zmath
12. Hangelbroek T., Madych W., Narcowich F., Ward J.D., “Cardinal interpolation with Gaussian kernels”, Journal of Fourier Analysis and Applications, 18:1 (2012), 67–86  crossref  mathscinet  zmath
13. Hamm K., “Approximation rates for interpolation of Sobolev functions via Gaussians and allied functions”, Journal of Approximation Theory, 189 (2015), 101–122  crossref  mathscinet  zmath
14. Griebel M., Schneider M., Zenger C., “A combination technique for the solution of sparse grid problems”, Iterative methods in linear algebra, Proceedings of the IMACS international symposium (Brussels, Belgium, 2–4 April, 1991), North-Holland, Amsterdam, 1992, 263–281  mathscinet  zmath
15. Georgoulis E.H., Levesley J., Subhan F., “Multilevel sparse kernel-based interpolation”, SIAM Journal on Scientific Computing, 35:2 (2013), A815–A831  crossref  mathscinet  zmath
16. Vulikh B.Z., A brief course of the theory of real variable functions (introduction to the theory of integral), Nauka, Moscow, 1973
17. Moré J.J., Thuente D.J., “Line search algorithms with guaranteed sufficient decrease”, ACM Transactions on Mathematical Software, 20:3 (1994), 286–307  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025