|
|
|
References
|
|
|
1. |
D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. |
2. |
M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. |
3. |
H. J. Kuiper, “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo (2), 20:2-3 (1971), 113–138 |
4. |
M. A. Krasnosel'skii, A. V. Pokrovskii, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 |
5. |
V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298 |
6. |
V. N. Pavlenko, D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Siberian Adv. Math., 27:1 (2017), 16–25 |
7. |
V. N. Pavlenko, D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Sb. Math., 208:1 (2017), 157–172 |
8. |
V. N. Pavlenko, D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Math. Notes, 101:2 (2017), 284–296 |
9. |
V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Siberian Math. J., 58:2 (2017), 288–295 |
10. |
V. N. Pavlenko, D. K. Potapov, “Elenbaas problem of electric arc discharge”, Math. Notes, 103:1 (2018), 89–95 |
11. |
V. N. Pavlenko, D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Sb. Math., 210:7 (2019), 1043–1066 |
12. |
V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Math., 84:3 (2020), 592–607 |
13. |
V. N. Pavlenko, D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Equ., 56:7 (2020), 831–841 |
14. |
V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278 |
15. |
V. N. Pavlenko, D. K. Potapov, “Variational method for elliptic systems with discontinuous nonlinearities”, Sb. Math., 212:5 (2021), 726–744 |
16. |
V. N. Pavlenko, D. K. Potapov, “Existence of semiregular solutions of elliptic systems with discontinuous nonlinearities”, Math. Notes, 110:2 (2021), 226–241 |
17. |
H. J. Kuiper, “Eigenvalue problems for noncontinuous operators associated with quasilinear elliptic equations”, Arch. Ration. Mech. Anal., 53:2 (1974), 178–186 |
18. |
I. V. Shragin, “Conditions for measurability of superpositions”, Soviet Math. Dokl., 12 (1971), 465–470 |
19. |
M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. |
20. |
Kung-ching Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 |
21. |
S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991, viii+286 pp. |
22. |
O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. |
23. |
V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 |
24. |
Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, 2-e izd., ispr. i dop., Librokom, M., 2011, 224 pp. |
25. |
H. J. Kuiper, W. R. Derrick, “Nonlinear ordinary and functional Sturm–Liouville problems”, Indiana Univ. Math. J., 25:2 (1976), 179–190 |
26. |
J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York–London–Paris, 1969, vii+236 pp. |