RUS  ENG
Полная версия
ЖУРНАЛЫ // Препринты Института прикладной математики им. М. В. Келдыша РАН

Препринты ИПМ им. М. В. Келдыша, 2018, 027, 28 стр. (Mi ipmp2389)

Quantum-classical modeling of rhodopsin photoisomerization
A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovsky, V. D. Lakhno

Список литературы

1. Lamb T. D., Collin S. P., Pugh E. N. Jr., “Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup”, Nat. Rev. Neurosci., 8 (2007), 960–976  crossref  elib
2. Menon S. T., Han M., Sakmar T. P., “Rhodopsin: Structural Basis of Molecular Physiology”, Physiol. Rev., 81 (2001), 1659–1688  crossref
3. Spudich J. L., Yang C. S., Jung K. H., Spudich E. N., “Retinylidene Proteins: Structures and Functions from Archaea to Humans”, Annu. Rev. Cell Dev. Biol., 16 (2000), 365–392  crossref
4. Nadtochenko V. A., Smitienko O. A., Feldman T. B., Mozgovaya M. N., Shelaev I. V., Gostev F. E., Sarkisov O. M., Ostrovsky M. A., “Conical intersection participation in femtosecond dynamics of visual pigment rhodopsin chromophore cis-trans photoisomerization”, Dokl. Biochem. Biophys., 446 (2012), 242–246  crossref  elib
5. Polli D., Altoe P., Weingart O., Spillane K.M., Manzoni C., Brida D., Tomasello G., Orlandi G., Kukura P., Mathies R.A., Garavelli M., Cerullo G., “Conical intersection dynamics of the primary photoisomerization event in vision”, Nature, 467 (2010), 440–443  crossref
6. Yabushita A., Kobayashi T., Tsuda M., “Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation”, J. Phys. Chem. B, 116 (2012), 1920–1926  crossref
7. Dartnall H. J., “The photosensitivities of visual pigments in the presence of hydroxylamine”, Vision Res., 8 (1968), 339–358  crossref
8. Kandori H., Matuoka S., Shichida Y., Yoshizawa T., Ito M., Tsukida K., Balogh-Nair V., Nakanishi K., “Mechanism of isomerisation of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picoseconds laser pulse”, Biochemistry, 28 (1989), 6460–6467, PMID: 2790007  crossref
9. Mizukami T., Kandori H., Shichida Y., Chen A.-H., Derguini F., Caldwell C. G., Biffe C., Nakanishi K., Yoshizawa T., “Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cislocked eight-membered ring retinal”, Proc. Natl. Acad. Sci. USA, 90 (1993), 4072–4076 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46448  crossref
10. Peteanu L. A., Schoenlein R. W., Wang Q., Mathies R. A., Shank C. V., “The first step in vision occurs in femtoseconds: complete blue and red spectral studies”, Proc. Natl. Acad. Sci. USA, 90 (1993), 11762–11766 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC48064/  crossref
11. Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V., “The first step in vision: femtosecond isomerization of rhodopsin”, Science, 254 (1991), 412–415  crossref
12. Johnson P. J. M., Halpin A., Morizumi T., Prokhorenko V. I., Ernst O. P., Miller R. J. D., “Local vibrational coherences drive the primary photochemistry of vision”, Nat. Chem., 7 (2015), 980–986  crossref  elib
13. Schnedermann C., Liebel M., Kukura P., “Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event”, J. Am. Chem. Soc., 137 (2015), 2886–2891  crossref  elib
14. Smitienko O., Nadtochenko V., Feldman T., Balatskaya M., Shelaev I., Gostev F., Sarkisov O., Ostrovsky M., “Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin)”, Molecules, 19 (2014), 18351–18366  crossref  elib
15. Smitienko O. A., Mozgovaya M. N., Shelaev I. V., Gostev F. E., Feldman T. B., Nadtochenko V. A., Sarkisov O. M., Ostrovsky M. A., “Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin”, Biochemistry (Moscow), 75 (2010), 25–35  crossref
16. Worth G. A., Cederbaum L. S., “Beyond Born-Oppenheimer: molecular dynamics through a conical intersection”, Annu. Rev. Phys. Chem., 55 (2004), 127–158  crossref
17. Gonzalez-Luque R., Garavelli M., Bernardi F., Merchan M., Robb M. A., Olivucci M., “Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization”, Proc. Natl. Acad. Sci. USA, 97 (2000), 9379–9384 http://www.pnas.org/content/97/17/9379  crossref
18. Polli D., Rivalta I., Nenov A., Weingart O., Garavelli M., Cerullo G., “Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy”, Photochem. Photobiol. Sci., 14 (2015), 213–228  crossref  elib
19. Schapiro I., Ryazantsev M. N., Frutos L. M., Ferre N., Lindh R., Olivucci M., “The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects”, J. Am. Chem. Soc., 133 (2011), 3354–3364  crossref  elib
20. Abe M., Ohtsuki Y., Fujimura Y., Domcke W., “Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection”, J. Chem. Phys., 123 (2015), 144508  crossref
21. Levine B. G., Martinez T. M., “Isomerization through conical intersections”, Annu. Rev. Phys. Chem., 58 (2008), 613–634  crossref
22. Tomasello G., Olaso-Gonzalez G., Altoe P., Stenta M., Serrano-Andres L., Merchan M., Orlandi G., Bottoni A., Garavelli M., “Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching”, J. Am. Chem. Soc., 131 (2009), 5172–5186  crossref  elib
23. Kochendoerfer G. G., Mathies R. A., “Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin”, J. Phys. Chem., 100 (1996), 14526–14532 https://pdfs.semanticscholar.org/9dc8/cae3a9c373c13a4bb434a1fb53a9eb82b411.pdf  crossref
24. Chung W. C., Nanbu S., Ishida T., “QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin”, J. Phys. Chem. B, 116 (2012), 8009–8023  crossref
25. Rivalta I., Nenov A., Weingart O., Cerullo G., Garavelli M., Mukamel S., “Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin”, J. Phys. Chem. B, 118 (2014), 8396–8405  crossref
26. Tscherbul T. V., Brumer P., “Quantum coherence effects in natural lightinduced processes: cis-trans photoisomerization of model retinal under incoherent excitation”, Phys. Chem. Chem. Phys., 17 (2015), 30904–30913  crossref
27. Weingart O., Altoe P., Stenta M., Bottoni A., Orlandi G., Garavelli M., “Product formation in rhodopsin by fast hydrogen motions”, Phys. Chem. Chem. Phys., 13 (2011), 3645–3648  crossref
28. Weingart O., Garavelli M., “Modelling vibrational coherence in the primary rhodopsin photoproduct”, J. Chem. Phys., 137 (2012), 22A523  crossref
29. Honig B., Karplus M., “Implications of torsional potential of retinal isomers for visual excitation”, Nature, 229 (1971), 558–560, PMID: 4925351  crossref
30. Warshel A., “Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines”, The Nobel Prizes: Nobel Lecture, 8 December 2013, 159 https://pdfs.semanticscholar.org/c2f4/d2c43964731d99ae76da4e6a5cc0702abb71.pdf
31. Andruniow T., Ferre N., Olivucci M., “Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level”, Proc. Natl. Acad. Sci. USA, 101 (2004), 17908–17913  crossref
32. Borhan B., Soutu M. L., Imai H., Shichida Y., Nakanishi K., “Movement of retinal along the visual transduction path”, Science, 288 (2000), 2209–2212  crossref
33. Liu R. S. H., “Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction”, Acc. Chem. Res., 34 (2001), 555–562  crossref
34. Liu R. S., Yang L. Y., Liu J., “Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities”, Photochem. Photobiol., 83 (2007), 2–10  crossref  elib
35. Nakamichi H., Okada T., “Crystallographic analysis of primary visual photochemistry”, Angew. Chem. Int. Ed., 45 (2006), 4270–4273  crossref
36. Smith S. O., Courtin J., de Groot H. J. M., Gebhard M., Lugtenburg J., “13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin”, Biochemistry, 30 (1991), 7409–7415  crossref
37. Saam J., Tajkhorshid E., Hayashi S., Schulten K., “Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin”, Biophys. J., 83 (2002), 3097–3112  crossref
38. Yamada A., Yamato T., Kakitani T., Yamamoto S., “Torsion potential works in rhodopsin”, Photochem. Photobiol., 79 (2014), 476–486  crossref
39. Kholmurodov Kh. T., Feldman T. B., Ostrovsky M. A., “Visual pigment rhodopsin: molecular dynamics of 11-cis-retinal chromophore and amino-acid residues in the chromophore center”, Computer simulation study, Mendeleev comm., 1 (2006), 1–8  crossref
40. Isin B., Schulten K., Tajkhorshid E., Bahar I., “Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes”, Biophys. J., 95 (2008), 789–803  crossref
41. Smith J. C., Roux B., “Eppur si muove! The 2013 nobel prize in chemistry”, Structure, 21 (2013), 2102–2105  crossref
42. Holstein T., “Studies of polaron motion: Part I. The molecular-crystal model”, Ann. Phys., 8 (1959), 325–342  crossref
43. Davydov A. S., “The theory of contraction of proteins under their excitation”, J. Theor. Biology, 38 (1973), 559–569  crossref
44. Davydov A. S., “Solitons and energy transfer along protein molecules”, J. Theor. Biology, 66 (1977), 379–387  crossref
45. Bernassoni J. (ed.), Physics in one dimension. Springer series in solid-state sciences, Springer-Verlag, 1981
46. Okahata Y., Kobayashi T., Tanaka K., Shimomura M. J., “Anisotropic Electric Conductivity in an Aligned DNA Cast Film”, J. Am. Chem. Soc., 120 (1998), 6165–6166  crossref
47. Starikov E. B., Tanaka S., Lewis J. P. (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier, 2006
48. Cramer T., Steinbrecher T., Labahn A., Koslowski T., “Static and dynamic aspects of DNA charge transfer: a theoretical perspective”, Phys. Chem. Chem. Phys., 7 (2005), 4039–4050  crossref
49. Lakhno V. D., “Oscilations in the primary charge separation in bacterial photosynthesis”, Phys. Chem. Chem. Phys., 4 (2002), 2246–2250  crossref
50. Lakhno V. D., “Dynamical theory of primary processes of charge separation in the photosynthetic reaction center”, J. Biol. Phys., 31 (2005), 145–159  crossref  elib
51. Komineas S., Kalosakas G., Bishop A. R., “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905  crossref
52. Maniadis P., Kalosakas G., Rasmussen K. O., Bishop A. R., “Ac conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912  crossref
53. Diaz E., Lima R. P. A., Dominguez-Adame F., “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303  crossref  elib
54. Lakhno V. D., Sultanov V. B., Montgomery Pettitt B., “Combined hopping-superexchange model of a hole transfer in DNA”, Chem. Phys. Lett., 400 (2004), 47–53  crossref
55. Shigaev A. S., Ponomarev O. A., Lakhno V. D., “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chem. Phys. Lett., 513 (2011), 276–279  crossref  elib
56. Korshunova A. N., Lakhno V. D., “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209  crossref  elib
57. Ganter U. M., Schmid E. D., Perez-Sala D., Rando R. R., Siebert F., “Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation”, Biochemistry, 28 (1989), 5954–5962, PMID: 2505843  crossref
58. Han M., Groesbeek M., Smith S. O., Sakmar T. P., “Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal”, Biochemistry, 37 (1998), 538–545  crossref
59. Meyer C. K., Bohme M., Ockenfels A., Gartner W.,. Hofmann K. P., Ernst O. P., “Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches”, J. Biol. Chem., 275 (2000), 19713–19718  crossref
60. Lemaitre V., Yeagle P., Watts A., “Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin”, Biochemistry, 44 (2005), 12667–12680  crossref
61. Kholmurodov Kh. T., Feldman T. B., Ostrovskii M. A., “Molecular Simulation Studies in Material and Biological Sciences”, Molecular dynamics simulation and experimental studies of the visual pigment rhodopsin: multiple conformational states and structural changes, ed. Kh.T. Kholmurodov, Nova Science Publishers Inc., N.Y., 2007, 85–113
62. Lin S. W., Groesbeek M., van der Hoef I., Verdegem P., Lugtenburg J., Mathies R. A., “Vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C11dC12 torsion coordinate”, J. Phys. Chem. B, 102 (1998), 2787–2806  crossref
63. Kim J. E., Mathies R. A., “Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin”, J. Phys. Chem. A, 106 (2002), 8508–8515  crossref
64. Fialko N. S., Lakhno V. D., “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108–112  crossref
65. Wang Q., Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V., “Vibrationally coherent photochemistry in the femtosecond primary event of vision”, Science, 266 (1994), 422–424  crossref
66. Feldman T. B., Smitienko O. A., Shelaev I. V., Gostev F. E., Nekrasova O. V., Dolgikh D. A., Nadtochenko V. A., Kirpichnikov M. P., Ostrovsky M. A., “Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin”, J. Photochem. Photobiol. B: Biology, 164 (2016), 296–305  crossref


© МИАН, 2025