|
|
|
Список литературы
|
|
|
1. |
Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика, т. 2, Теория конденсированного состояния, Наука, Физматлит, М., 1978 |
2. |
J. G. Bednorz, K. A. Muller, “Possible high T$_c$ superconductivity in the Ba-La-Cu-O system”, Z. Physik B Condensed Matter, 64 (1986), 189 |
3. |
В. Л. Гинзбург, “Сверхпроводимость: позавчера, вчера, сегодня, завтра”, УФН, 170 (2000), 619 |
4. |
S. L. Kakani, S. Kakani, Superconductivity, Anshan, Kent, UK, 2009 |
5. |
T. Tohyama, “Recent Progress in Physics of High-Temperature Superconductors”, Jpn. J. Appl. Phys., 51 (2012), 010004 |
6. |
S. Kruchinin, H. Nagao, S. Aono, Modern Aspects of superconductivity. Theory of superconductivity, World Sci., River Edge, NJ USA, 2011 |
7. |
K. P. Sinha, S. L. Kakani, “Fermion local charged boson model and cuprate superconductors”, Proceedings National Academy of Sciences, India. Section A, Physical Sciences, 72 (2002), 153 |
8. |
K. N. Benneman, J. B. Ketterson, Superconductivity: Conventional and Unconventional Superconductors, v. 1, 2, Springer, New-York, NY, 2008 |
9. |
J. R. Schrieffer, Theory of Superconductivity, Westview Press, Oxford, UK, 1999 |
10. |
L.N. Cooper, D. Feldman (eds.), BCS: 50 years, World Sci. Publ. Co, Singapore, 2011 |
11. |
N.M. Plakida, High Temperature Cuprate Superconductors: Experiment, Theory and Applications, Springer, Heidelberg, Germany, 2010 |
12. |
I. Askerzade, Unconventional Superconductors, Springer Series in Material Science, 153, Springer, Berlin, Germany, 2012 |
13. |
O. Gunnarsson, O. Rosch, “Interplay between electron-phonon and Coulomb interactions in cuprates”, J. Phys.: Condens. Matter, 20 (2008), 043201 |
14. |
T. Moriya, K. Ueda, “Spin fluctuations and high temperature superconductivity”, Adv. Phys., 49 (2000), 555 |
15. |
D. Manske, Theory of Unconventional Superconductors, Springer, Heidelberg, Germany, 2004 |
16. |
J. Bardeen, L. N. Cooper, J. R. Schrieffer, “Theory of Superconductivity”, Phys. Rev., 108 (1957), 1175 |
17. |
Л. В. Келдыш, А. Н. Козлов, “Коллективные свойства экситонов в полупроводниках”, ЖЭТФ, 54 (1968), 978 |
18. |
D. M. Eagles, “Possible Pairing without Superconductivity at Low Carrier Concentrations in Bulk and Thin-Film Superconducting Semiconductors”, Phys. Rev., 186 (1969), 456 |
19. |
P. Nozières, S. Schmitt-Rink, “Propagation of Second sound in a superfluid Fermi gas in the unitary limit”, J. Low Temp. Phys., 59 (1985), 195 |
20. |
В. М. Локтев, “Механизмы сверхпроводимости медных оксидов”, Физика низких температур, 22 (1996), 3 |
21. |
M. Randeria, Precursor Pairing Correlations and Pseudogaps. Varenna Lectures, 1997, arXiv: cond-mat/9710223 [cond-mat.str-el] |
22. |
Y. J. Uemura, “Bose-Einstein to BCS crossover picture for high-T$_c$ cuprates”, Physica C: Superconductivity, 282–287:1 (1997), 194 |
23. |
M. Drechsler, W. Zwerger, “Crossover from BCS-superconductivity to Bosecondensation”, Ann. Phys., 1 (1992), 15 |
24. |
A. Griffin, D.W. Snoke, S. Stringari (eds.), Bose-Einstein Condensation, Cambridge U. P., New-York, 1996 |
25. |
Г. М. Элиашберг, “Взаимодействие электронов с колебаниями решетки в сверхпроводнике”, ЖЭТФ, 38 (1960), 966 |
26. |
F. Marsiglio, J. P. Carbotte, “Gap function and density of states in the strongcoupling limit for an electron-boson system”, Phys. Rev. B, 43 (1991), 5355 |
27. |
R. Micnas, J. Ranninger, S. Robaszkiewicz, “Superconductivity in narrow-band systems with local nonretarded attractive interactions”, Rev. Mod. Phys., 62 (1990), 113 |
28. |
W. Zwerger (ed.), The BCS-BEC Crossover and the Unitary Fermi Gas, Lecture Notes in Physics, Springer, Berlin–Heidelberg, 2012 |
29. |
I. Bloch, J. Dalibard, W. Zwerger, “Many-body physics with ultracold gases”, Rev. Mod. Phys., 80 (2008), 885 |
30. |
S. Giorgini, L. P. Pitaevskii, S. Stringari, “Theory of ultracold atomic Fermi gases”, Rev. Mod. Phys., 80 (2008), 1215 |
31. |
Q. Chen, J. Stajic, S. Tan, K. Levin, “BCS-BEC crossover: From high temperature superconductors to ultracold superfluids”, Phys. Rep., 412 (2005), 1 |
32. |
W. Ketterle, M. W. Zwierlein, Making, probing and understanding ultracold Fermi gases in Ultra-cold Fermi gases, eds. M. Inguscio, W. Ketterle, C. Salomon, IOS Press, Amsterdam, 2007, 95 |
33. |
P. Pieri, G. C. Strinati, “Strong-coupling limit in the evolution from BCS superconductivity to Bose-Einstein condensation”, Phys. Rev. B, 61 (2000), 15370 |
34. |
B. Gerlach, H. Lowen, Analytical properties of polaron systems or: Do polaronic phase transitions exist or not?, Rev. Mod. Phys., 63 (1991), 63 |
35. |
В. Д. Лахно, “Трансляционно-инвариантная теория полярона (биполярона) и проблема квантования в окрестности классического решения”, ЖЭТФ, 143:6 (2013), 1033–1038 |
36. |
А. П. Горьков, “Микроскопический вывод уравнений Гинзбурга-Ландау в теории сверхпроводимости”, ЖЭТФ, 36 (1959), 1918 |
37. |
А. С. Александров, А. Б. Кребс, “Поляроны в высокотемпературных сверхпроводниках”, УФН, 162 (1992), 1 |
38. |
B. K. Chakraverty, J. Ranninger, D. Feinberg, “Experimental and Theoretical Constraints of Bipolaronic Superconductivity in High T$_c$ Materials: An Impossibility”, Phys. Rev. Lett., 81 (1988), 433 |
39. |
E. V. L. de Mello, J. Ranninger, “Dynamical properties of small polarons”, Phys. Rev. B, 55 (1997), 14872 |
40. |
Yu. A. Firsov, V. V. Kabanov, E. K. Kudinov, A. S. Alexandrov, “Comment on “Dynamical properties of small polarons””, Phys. Rev. B, 59 (1999), 12132 |
41. |
E. V. L. de Mello, J. Ranninger, “Reply to ‘`Comment on ’Dynamical properties of small polarons' "”, Phys. Rev. B, 59 (1999), 12135 |
42. |
P. Zhou et al, “Electron pairing in the pseudogap state revealed by shot noise in copper oxide junctions”, Nature, 572 (2019), 493–496 |
43. |
I. Bozovic, X. He et al, “Dependence of the critical temperature in overdoped coopper oxides on superfluid density”, Nature, 536 (2016), 309 |
44. |
В. Д. Лахно, “Анзац Пекара и проблема сильной связи в теории полярона”, УФН, 185 (2015), 317–331 |
45. |
С. И. Пекар, Исследования по электронной теории кристаллов, ГИТТЛ, М.–Л., 1951 |
46. |
H. Frohlich, H. Pelzer, S. Zienau, “Properties of slow electrons in polar materials”, Philos. Mag., 41 (1950), 221 |
47. |
C. G. Kuper, G. D. Whitfield (eds.), Excitos and Polarons, Oliver and Boyd, Edinburg, 1963 |
48. |
J. T. Devreese, A. S. Alexandrov, “Froehlich Polaron and Bipolaron: Recent Developments”, Rep. Progr. Phys., 72 (2009), 066501 |
49. |
V. D. Lakhno (ed.), Polarons and Applications, Wiley, Chichester, 1994 |
50. |
J. T. Devreese (ed.), Polarons in Ionic Crystal and Polar Semiconductors, North-Holland, Amsterdam, 1972 |
51. |
J. T. Devreese, F. Peeters (eds.), Polarons and Excitons in Polar Semiconductors and Ionic Crystals, Plenum Press, New York, 1984 |
52. |
A. J. Heeger, S. Kivelson, J. Schrieffer, W. P. Su, “Solitons in Conducting Polymers”, Rev. Mod. Phys., 60 (1988), 781 |
53. |
L. A. Ribeiro et al, “Effects of Temperature and Electric Field Induced Phase Transitions on the Dynamics of Polarons and Bipolarons”, New Journal of Chemistry, 37 (2013), 2829–2836 |
54. |
L. F.R Junior, S. Stafstrom, “Polaron Stability in Molecular Semiconductors: Theoretical Insight into the Impact of the Temperature, Electric Field and the System Dimensionality”, Phys. Chem. Phys., 17 (2015), 8973–8982 |
55. |
G. B. Schuster, Long-Range Charge Transfer in DNA, Springer, Heidelberg, 2004 |
56. |
E. B. Starikov, J. P. Lewis, S. Tanaka, Modern Methods for Theoretical Physical Chemistry of Biopolimers, Elsevier, Amsterdam–Boston–Tokyo, 2006 |
57. |
D. Emin, Polarons, Cambridge Univ. Press, Cambridge, 2013 |
58. |
A. S. Alexandrov, N. Mott, Polarons & Bipolarons, World Sci. Pub. CO Inc, Singapore, 1996 |
59. |
G. Iadonisi, J Ranninger, G. De Filips, Polarons in Bulk Materials and Systems with Reduced Dimensionality, IOS Press, Amsterdam–Oxford–Tokio–Washington, 2006 |
60. |
Э. Л. Нагаев, Физика магнитных полупроводников, Наука, М., 1979 |
61. |
В. Д. Лахно, Г. Н. Чуев, “Структура полярона большого радиуса в пределе сильной связи”, Успехи физических наук, 165 (1995), 285–298 |
62. |
F. Grusdt et al, “Bose polarons in ultracold atoms in one dimension: beyond the Frohlich paradigm”, New J. Phys., 19 (2017), 103035 |
63. |
A. Chatterjee, S. Mukhopadhyay, Polarons, Bipolarons. An Introduction, CRC Press, Taylor & Francis Group, 2018 |
64. |
M. V. Tkach et al, “Renormalized energy of ground and first excited state of Frohlich polaron in the range of weak conpling”, Condensed Matter Physics, 18:3 (2015), 33707, 12 pp. |
65. |
E. H. Lieb, K. Yamazaki, “Ground State Energy and Effective Mass of the Polaron”, Phys. Rev., 11 (1958), 728–733 |
66. |
E. H. Lieb, L. E. Thomas, “Exact Ground State Energy of the Sstrong-Conpling Polaron”, Commun. in Math. Phys., 183 (1997), 511–519 |
67. |
Н. К. Балабаев, В. Д. Лахно, “Солитонные решения в теории полярона”, ТМФ, 45 (1980), 139–141 |
68. |
Р. Раджараман, Солитоны и инстантоны в квантовой теории поля, Мир, М., 1985, 414 с. |
69. |
В. Д. Лахно, “Энергия и критическое значение параметра ионной связи трехмерного биполярона большого радиуса”, ЖЭТФ, 137 (2010), 926 |
70. |
V. D. Lakhno, “Translation-invariant bipolarons and the problem of high temperature superconductivity”, Solid State Comm., 152 (2012), 621 |
71. |
Н. И. Каширина, В. Д. Лахно, А. В. Тулуб, “Теорема вириала и проблема основного состояния в теории полярона”, ЖЭТФ, 141 (2012), 994 |
72. |
S. L. Braunstein, “Squeezing as an irreducible resonrce”, Phys. Rev. A, 71 (2005), 055801 |
73. |
T. Hakioglu et al, “Phonon Squeezing vie correlations in the superconducting electron-phonon interaction”, Phys. Rev. B, 51 (1995), 15363 |
74. |
А. С. Шумовский, “Каноническое преобразование Боголюбова и коллективные состояния бозе-полей”, ТМФ, 89 (1991), 438–445 |
75. |
А. В. Тулуб, “Медленные электроны в полярных кристаллах”, ЖЭТФ, 41 (1961), 1828 |
76. |
R. J. Glauber, “Photon correlations”, Phys. Rev. Lett., 10 (1963), 84 |
77. |
М. К. Тайш, Б. Э.А. Салэ, “Сжатые состояния света”, УФН, 161 (1991), 101 |
78. |
В. П. Шляйх, Квантовая оптика в фазовом пространстве, Физматлит, 2005, ; W.P. Schleich, Quantum optics in Phase Space // WileyVCH, Berlin, М., 2001, 760 с. |
79. |
О. В. Мисочко, “Неклассические состояния возбуждений кристаллической решетки: Сжатые и запутанные фононы”, УФН, 183 (2013), 917–933 |
80. |
Zheng Hang, “New type of Cooper pairing in systems with strong electron-phonon interaction”, Phys. Rev. B, 37 (1988), 7419 |
81. |
Zheng Hang, “Variational ground state of a system with strong electron-phonon interaction”, Phys. Rev. B, 38 (1988), 11865 |
82. |
Zhend Hang, “Variational treatment of the strong electron-phonon interaction”, J. Phys.: Condens. Matter, 1 (1989), 1641–1651 |
83. |
Zhend Hang, “Reconsideration of a simple model for bipolarons”, Solid State Communications, 65 (1988), 731–734 |
84. |
Zhend Hang, “Squeered polarons in one dimesion”, Phys. Lett. A, 131 (1988), 115–118 |
85. |
T. Holsteint, “Studies of polaron motion: Part II. “Small” polaron”, Annals of Physics, 8:3 (1959), 343–389 |
86. |
M. Porsch, J. Roseler, “Recoil Effects in the Polaron Problem”, Phys. Status Soliti, B, 23 (1967), 365 |
87. |
J. Roseler, “A new variational ansatz in the polaron theory”, Phys. Status Solidi, 25 (1968), 311 |
88. |
H. Barentzen, “Effective Electron-Hole Interaction for Intermediate and Strong-Phonon Conpling”, Phys. Stat. Sol. (B), 71 (1975), 245 |
89. |
B. S. Kandemir, T. Altanhan, “Some Properties of large polarons with squeezed states”, J. Phys. Condens. Mat., 6 (1994), 4505–4514 |
90. |
P. Nagy, “The polaron squeezed states”, J. Phys. Condens. Matter., 2 (1991), 10573–10579 |
91. |
B. S. Kandemir, A. Cetin, “Impurity magnetopolaron in a parabolic quantum dot: the squeezed-state variational approach”, J. Phys.: Condens. Matter, 17 (2005), 667–677 |
92. |
Yan-Min Zhang, Cheng Ze, “Study of Two-Mode Squeezed Magnetopolarons”, Commun. Theor. Phys., 47 (2007), 747–751 |
93. |
N. Kervan, T. Altanhan, A. Chatterjee, “A variational approach with squeezed state for the polaronic effects in quantum dots”, Phys. Lett A, 315 (2003), 280–287 |
94. |
F. Marsiglio, J. P. Carlotte, Superconductivity, v. 1, Springer Verlag, Berlin, 2008 |
95. |
J. P. Carbotte, “Properties of boson-exchange superconductors”, Rev. Mod. Phys., 62 (1990), 1027 |
96. |
А. В. Тулуб, “Учет отдачи в нерелятивистской квантовой теории поля”, Вестник Ленинградского университета, серия физики и химии, вып. 4, 1960, № 22, 104–118 |
97. |
А. В. Тулуб, “Комментарий к теории полярон-фононного рассеяния”, ТМФ, 185:6 (2015), 199–212 |
98. |
F. London, “The $\lambda$-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy”, Nature, 141 (1938), 643–644 |
99. |
L. Tisza, “Transport Phenomena in Helium II”, Nature, 141 (1938), 913 |
100. |
Л. Д. Ландау, Теория сверхтекучести гелия II, ЖЭТФ, 592, 1941; “The Theory of Superfluidity of Helium II”, J. Phys. U.S.S.R., 5 (1941), 71; JETP, 11 (1941), 592 |
101. |
Н. Н. Боголюбов, “К теории сверхтекучести”, Изв. АН СССР Сер. Физ., 11:1 (1947), 77; “On the theory of superfluidity”, J. Phys. USSR, 11 (1947), 23 |
102. |
В. Л. Гинсбург, Л. Д. Ландау, “К теории сверхпроводимости”, ЖЭТФ, 20 (1950), 1064 |
103. |
Н. Н. Боголюбов, “О новом методе в теории сверхпроводимости”, ЖЭТФ, 34:1 (1958), 58 |
104. |
P. W. Anderson, “Model for electronic structure of amorphous semiconductors”, Phys. Rev. Lett., 34 (1975), 953 |
105. |
A. Alexandrov, J. Ranninger, “Bipolaronic Superconductivity”, Phys. Rev B, 24 (1981), 1164 |
106. |
P. W. Anderson, The Theory of Superconductivity in the High-T$_c$ Cuprates, Princeton Series in Physics, Princeton Univ. Press, 1997 |
107. |
Ю. А. Изюмов, “Сильно коррелированные электроны: t-j модель”, УФН, 167 (1997), 465–497 |
108. |
В. Вайскопф, “Образование куперовских пар и природа сверхпроводящих токов”, УФН, 140 (1983), 117–135 |
109. |
V. D. Lakhno, “Superconducting Properties of 3D Low-Density TI-Bipolaron Gas in Magnetic Field”, Condens. Matter, 4 (2019), 43 |
110. |
W. Heisenberg, “Die selbstenergie des elektrons”, Z. Phys., 65 (1930), 4 |
111. |
L. Rosenfeld, “Uber eine mögliche Fassung des Diracschen Programms zur Quantenelektrodynamik und deren formalen Zusammenhang mit der Heisenberg-Paulischen Theorie”, Z. Phys., 76 (1932), 729 |
112. |
С. В. Тябликов, Методы квантовой теории магнетизма, Наука, М., 1975 |
113. |
S. J. Miyake, “Bound Polaron in the Strong-coupling Regime”, Polarons and Applications, ed. V.D. Lakhno, Wiley, Leeds, 1994, 219 |
114. |
И. Б. Левинсон, Э. И. Рашба, “Пороговые явления и связанные состояния в поляронной проблеме”, УФН, 111 (1973), 683–718 |
115. |
V. D. Lakhno, “A translation invariant bipolaron in the Holstein model and superconductivity”, Springer Plus, 5 (2016), 1277 |
116. |
V. D. Lakhno, “Phonon interaction of electrons in the translation-invariant strongcoupling theory”, Mod. Phys. Lett. B, 30 (2016), 1650031 |
117. |
V. D. Lakhno, “Superconducting Properties of 3D Low-Density TranslationInvariant Bipolaron Gas”, Adv. Condense Matt. Phys., 2018, 1380986 |
118. |
V. D. Lakhno, “Superconducting Properties of a nonideal Bipolaron Gas”, Physica C: Superconductivity and its applications, 561 (2019), 1–8 |
119. |
V. D. Lakhno, “Peculiarities in the concentration dependence of the superconducting transition temperature in the bipolaron theory of Cooper pairs”, Mod. Phys. Lett. B, 31 (2017), 1750125 |
120. |
L. Foldy, “Charged Boson Gas”, Phys. Rev. B, 124 (1961), 649 |
121. |
S. R. Hore, N. E. Frankel, “Dielectric response of the charged Bose gas in the random-phase approximation”, Phys. Rev. B, 12 (1975), 2619 |
122. |
S. R. Hore, N. E. Frankel, “Zero-temperature dielectric response of the charged Bose gas in a uniform magnetic field”, Phys. Rev. B, 1414 (1976) |
123. |
R. A. Ogg Jr., “Superconductivity in solid metal-ammonia solutions”, Phys. Rev., 70 (1946) |
124. |
В. Л. Винецкий, Э. А. Пашицкий, “Сверхтекучесть заряженного бозе-газа и биполяронный механизм сверхпроводимости”, УФЖ, 20 (1975), 338 |
125. |
Э. А. Пашицкий, В. Л. Винецкий, “Плазмонный и биполяронный механизмы высокотемпературной сверхпроводимости”, Письма в ЖЭТФ, Приложения, 46 (1987), 124 |
126. |
D. Emin, “Formation, motion, and high-temperature superconductivity of large bipolarons”, Phys. Rev. Lett., 62 (1989), 1544 |
127. |
В. Л. Винецкий, Р. И. Каширина, Э. А. Пашицкий, “Биполяронные состояния в ионных кристаллах и проблема высокотемпературной сверхпроводимости”, УФЖ, 37 (1992), 77 |
128. |
D. Emin, “Dynamic d-symmetry Bose condensate of a planar-large-bipolaronliquid in cuprate superconductors”, Phil. Mag., 31 (2017), 2931–2945 |
129. |
В. В. Шмидт, Введение в физику сверхпроводников, МЦНМО, М., 2000; V.V. Schmidt, The Physics of Superconductors, eds. P. Muller, A.V. Ustinov, Springer-Verlag, Berlin–Heidelberg, 1997, 397 pp. |
130. |
A. B. Pippard, “Field variation of the superconducting penetration depth”, Proc. Roy. Soc. (London) A, 203 (1950), 210 |
131. |
M. R. Schafroth, “Superconductivity of a Charged Ideal Bose Gas”, Phys. Rev., 100 (1955), 463 |
132. |
A. S. Alexandrov, “Comment on "Experimental and Theoretical Constraints of Bipolaronic Superconductivity in High T$_c$ Materials: An Impossibility"”, Phys. Rev. Lett., 82 (1999), 2620 |
133. |
A. S. Alexandrov, V. V. Kabanov, “Parameter-free expression for superconducting T$_c$ in cuprates”, Phys. Rev. B, 59 (1999), 13628 |
134. |
Y. J. Uemura et al, “Universal correlations between T$_c$ and ns/m (carrier density over effective mass) in high-T$_c$ cuprate superconductors”, Phys. Rev. Lett., 62 (1989), 2317 |
135. |
Y. J. Uemura et al, “Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements”, Phys. Rev. Lett., 66 (1991), 2665 |
136. |
C. C. Homes et al, “A universal scaling relation in high-temperature superconductors”, Nature, 430 (2004), 539 |
137. |
J. Zaanen, “Superconductivity: why the temperature is high”, Nature, 430 (2004), 512 |
138. |
J. Erdmenger, P. Kerner, S. M. uller, “Towards a holographic realization of Homes' law”, J. High Energy Phys., 10 (2012), 21 |
139. |
W. Meevasana, T. P. Devereaux et al, “Calculation of overdamped c-axis charge dynamics and the coupling to polar phonons in cuprate superconductors”, Phys. Rev. B, 74 (2006), 174524 |
140. |
W. Meevasana, N. J. C. Ingle, D. H. Lu et al, “Doping Dependence of the Coupling of Electrons to Bosonic Modes in the Single-Layer High-Temperature Bi$_2$Sr$_2$CuO$_6$ Superconductor”, Phys. Rev. Lett., 96 (2006), 157003 |
141. |
A. S. Mishchenko, N. Nagaosa et al, “Charge Dynamics of Doped Holes in High T$_c$ Cuprate Superconductors: A Clue from Optical Conductivity”, Phys. Rev. Lett., 100 (2008) |
142. |
A. S. Alexandrov, Theory of Superconductivity from weak to strong coupling, IOP publishing, Bristol, UK, 2003 |
143. |
A. S. Alexandrov, N. F. Mott, “Bipolarons”, Rep. Progr. Phys., 57 (1994), 1197 |
144. |
J. Zaanen, “Condensed-matter physics: Superconducting electrons go Missing”, Nature, 536 (2016), 282 |
145. |
V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane et al, “The Influence of Topological Phase Transition on the Superfluid Density of Overdoped Copper Oxides”, Phys. Chem. Chem. Phys., 19 (2017), 21964 |
146. |
J. Dukelsky, V. A. Khodel, P. Schuck et al, “Fermion condensation and non Fermi liquid behavior in a model with long range forces”, Z. Phys. B, 102 (1997), 245 |
147. |
J. Wu Božovič, X. He, A. T. Bollinger, “On the origin of high-temperature superconductivity in cuprates”, Oxide-based Materials and Devices VIII, Proc. SPIE, 10105, 2017, 1010502 |
148. |
E. A. Pashitskii, “The critical temperature as a function of the number of Cooper pairs, and the superconductivity mechanism in a layered LaSrCuO Crystal”, Low Temp. Phys., 42 (2016), 1184 |
149. |
G-Q. Hai, L. Candido, B. Brito, F. Peeters, “Electron pairing: from metastable electron pair to bipolaron”, Journal of Physics Comm., 2 (2018), 035017 |
150. |
Bilbro et al, “Temporal correlations of superconductivity above the transition temperature in La$_{2-x}$Sr$_x$CuO$_4$ probed by terahertz spectroscopy”, Nat. Phys., 7 (2011), 298–302 |
151. |
Л. П. Горьков, Н. Б. Копнин, “Высокотемпературные сверхпроводники с точки зрения эксперимента”, УФН, 156 (1988), 117 |
152. |
A. Damascelli, Z. Hussain, Z. X. Shen, “Angle-resolved photoemission studies of the cuprate superconductors”, Rev. Mod. Phys., 75 (2003), 473 |
153. |
M. R. Norman, D. Pines, C. Kallin, “The pseudogap: friend or foe of high $T_c$”, Adv. Phys., 54 (2005), 715 |
154. |
P. A. Lee, “Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors”, Phys. Rev. X, 4 (2014), 031017 |
155. |
M. Hashimoto, I. M. Vishik et al, “Energy gaps in high-transition-temperature cuprate superconductors”, Nat. Phys., 10 (2014), 483 |
156. |
T. Timusk, B. Statt, “The pseudogap in high-temperature superconductors: an experimental survey”, Rep. Progr. Phys., 62 (1999), 61–122 |
157. |
N. Overend, M. A. Howson, I. D. Lawrie, “3D X-Y scaling of the specific heat of YBa$_2$Cu$_3$O$_7$ single crystals”, Phys. Rev. Lett., 72 (1994), 3238 |
158. |
A. Marouchkine, Room-Temperature Superconductivity, Cambridge Int. Sci. Publ., Cambridge, 2004 |
159. |
W. Buckel, R. Kleiner, Superconductivity, Fundamentals and Applications, 73, 2-nd Edition, Wiley-VCH, Weinheim, 2004 |
160. |
J. Edstam, H. K. Olsson, “London penetration depth of YBCO in the frequency range 80–700 GHz”, Physica B, 194–196:2 (1994), 1589–1590 |
161. |
C. Panagopoulos, J. R. Cooper, T. Xiang, “Systematic behavior of the in-plane penetration depth in d-wave cuprates”, Phys. Rev. B, 57 (1998), 13422 |
162. |
T. Pereg-Barnea et al, “Absolute values of the London penetration depth in YBa$_2$Cu$_3$O$_{6+y}$ measured by zero field ESR spectroscopy on Gd doped single crystals”, Phys. Rev. B, 69 (2004), 184513 |
163. |
D. A. Bonn et al, “Microwave determination of the quasiparticle scattering time in YBa$_2$Cu$_3$O$_{6.95}$”, Phys. Rev. B, 47 (1993), 11314 |
164. |
О. Моделунг, Теория твердого тела, Наука, М., 1980; O. Madelung, v. I, II, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 416 pp. |
165. |
Dong-Ho Wu, S. Sridhar, “Pinning forces and lower critical fields in YBa$_2$Cu$_3$O$_y$ crystals: Temperature dependence and anisotropy”, Phys. Rev. Lett., 65 (1990) |
166. |
I. Maggio-Aprile, Ch. Renner, A. Erb et al, “Direct Vortex Lattice Imaging and Tunneling Spectroscopy of Flux Lines on YBa$_2$Cu$_3$O$_7$”, Phys. Rev. Lett., 75 (1995), 2754 |
167. |
S. H. Pan, E. W. Hudson et al, “STM Studies of the Electronic Structure of Vortex Cores in Bi$_2$Sr$_2$CaCu$_2$O$_8$”, Phys. Rev. Lett., 85 (2000), 1536 |
168. |
B. W. Hoogenboom, Ch. Renner et al, “Low-energy structures in vortex core tunneling spectra in Bi$_2$Sr$_2$CaCu$_2$O$_8$”, Physica C: Superconductivity, 332 (2000), 440 |
169. |
J.R. Schriffer (ed.), Handbook of High-Temperature Superconductivity. Theory and Experiment, J.S. Brooks Associated Ed., Springer; Springer Science + Business Media, LLC, 2007, 626 pp. |
170. |
A. A. Shanenko et al, “Stabilization of Bipolarons by Polaron Environment”, Solid St. Comm., 98 (1091) |
171. |
M. A. Smondyrev et al, “Stability criterion for large bipolarons in a polaron-gas background”, Phys. Rev. B, 63 (2000), 024302 |
172. |
D. R. Garcia, A. Lanzara, “Through a lattice darkly: shedding light on electron phonon coupling in high T$_c$ cuprates”, Adv. Cond. Mat., 2010, 807412 |
173. |
H. Iwasawa et al, “Isotopic Fingerprint of Electron-Phonon Coupling in High T$_c$ Cuprates”, Phys. Rev. Lett., 101 (2008), 157005 |
174. |
X. J. Zhou et al, “Universal nodal Fermi velocity”, Nature, 423 (2003), 398 |
175. |
S. R. Park et al, “Angle-Resolved Photoemission Spectroscopy of ElectronDoped Cuprate Superconductors: Isotropic Electron-Phonon Coupling”, Phys. Rev. Lett., 101 (2008), 117006 |
176. |
F. Giubileo et al, Two gap state density in MgB$_2$: a true bulk property of a proximity effect?, Phys. Rev. Lett., 58 (2002), 764 |
177. |
F. Giubileo et al, “Strong coupling and double gap density of states in superconducting MgB$_2$”, Phys. Rev. Lett., 87 (2001), 17708 |
178. |
M. Hattass, T. Jahnke et al, “Dynamics of two-electron photoemission from Cu(111)”, Phys. Rev. B, 77 (2008), 165432 |
179. |
B. Vignolle, A. Carrington et al, “Quantum oscillations in an overdoped high-T$_c$ superconductor”, Nature, 455 (2008), 952 |
180. |
E. A. Yelland, J. Singleton et al, “Quantum oscillations in the underdoped cuprate YBa$_2$Cu$_4$O$_8$”, Phys. Rev. Lett, 100 (2008), 047003 |
181. |
T. Helm, M. V. Kartsovnik et al, “Evolution of the Fermi Surface of the ElectronDopel High-Temperature Superconductor Nd$_{2-x}$Ce$_x$CuO$_4$ Revealed by Shubnikov-de Haas Oscillations”, Phys. Rev. Lett., 103 (2009), 157002 |
182. |
А. В. Окомельков, “Спектр нормальных волн в двумерной решетке нейтральных атомов”, ФТТ, 44 (2002), 1888–1894 |
183. |
M. J. Lawler et al, “Intra-unit-cell electronic nematicity of the high-T$_c$ copperoxide pseudogap states”, Nature 466, 347 (2010) |
184. |
S. V. Borisenko, A. A. Kordyuk et al, “Estimation of matrix-element effects and determination of the Fermi surface in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ systems using angle-scanned photoemission spectroscopy”, Phys. Rev. B, 64 (2001), 094513 |
185. |
K. M. Shen, F. Ronning et al, “Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors”, Phys. Rev. Lett., 93 (2004), 267002 |
186. |
H. Matsui, T. Sato et al, “BCS-like Bogoliubov quasiparticles in high-T$_c$ superconductors observed by angle-resolved photoemission spectroscopy”, Phys. Rev. Lett., 90 (2003), 217002 |
187. |
I. M. Vishik, W. S. Lee et al, “Doping-dependendent nodal Fermi velocity of the high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ reveald using high-resolution angle-resolved photoemission spectroscopy”, Phys. Rev. Lett., 104 (2010), 207002 |
188. |
N. C. Plumb, T. J. Reber et al, “Low-energy (<10mev) feature in the nodal electron self-energy and strong temperature dependence of the Fermi velocity in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$”, Phys. Rev. Lett., 105 (2010), 046402 |
189. |
H. Anzai, A. Ino et al, “Energy-dependent enhancement of the electron-coupling spectrum of the underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ superconductor”, Phys. Rev. Lett., 105 (2010), 227002 |
190. |
J. D. Rameau, H. B. Yang et al, “Coupling of low-energy electrons in the optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ superconductor to an optical phonon mode”, Phys. Rev. B, 80 (2009), 184513 |
191. |
K. A. Kouzakov, J. Berakdar, “Photoinduced Emission of cooper pairs from superconductors”, Phys. Rev. Lett., 91 (2003), 257007 |
192. |
G. Varelogiannis, “Orthorhombicity mixing of s-and d-gap components in YBa$_2$Cu$_3$O$_7$ without involving the chains”, Phys. Rev. B, 57 (1998), R732 |
193. |
T. P. Devereaux, R. Hackl, “Inelastic light scattering from correlated electrons”, Rev. Mod. Phys., 79 (2007), 175 |
194. |
О. В. Мисочко, “Электронное комбинационное рассеяние света в высокотемпературных сверхпроводниках”, УФН, 173 (2003), 385 |
195. |
V. D. Lakhno, New method of soft modes investigation by Little-Parks effect, arXiv: 1908.05735 |
196. |
K. Seo, H. d. Chen, J. Hu, “Complementary pair-density-wave and d-wavecheckerboard orderings in high-temperature superconductors”, Phys. Rev. B, 78 (2008), 094510 |
197. |
E. Berg, E. Fradkin, S. A. Kivelson, “Charge-4e superconductivity from pairdensity-wave order in certain high-temperature superconductors”, Nature Phys., 5 (2009), 830–833 |
198. |
D. F. Agterberg, H. Tsunetsugu, “Dislocations and vortices in pair-density-wave superconductors”, Nature Phys., 4 (2008), 639–642 |
199. |
M. Zelli, C. Kallin, A. J. Berlinksy, “Quantium oscillations in a $\pi$-striped superconductor”, Phys. Rev. B, 86 (2012), 104507 |
200. |
H. D. Chen, O. Vafek, A. Yazdani, S. C. Zhang, “Pair density wave in the pseudogap state of high temperature superconductors”, Phys. Rev. Lett., 93 (2004), 187002 |
201. |
C. Pepin, V. S. de Carvalho, T. Kloss, X. Montiel, “Pseudogap, charge order, and pairing density wave at the hot spots in curpate superconducters”, Phys. Rev. B, 90 (2014), 195207 |
202. |
H. Freire, V. S. de Carvalho, C. Pepin, “Penormalization group analysis of the pair-density-wave and charge order within the termionic hot-spot model for cuprate supercoducters”, Phys. Rev. B, 92 (2015), 045132 |
203. |
Y. Wang, D. F. Agterberg, A. Chubucov, “Interplay between pair-and chargedensity-wave orders in underdoped cuprates”, Phys. Rev. B, 91 (2015), 115103 |
204. |
Y. Wang, D. F. Agterberg, A. Chubucov, “Coexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates”, Phys. Rev. Lett, 114 (2015), 197001 |
205. |
P. Grzybowski, R. Micnas, Acta Physica Polonica A, 111 (2007), 455 |
206. |
S. A. Kivelson, D. S. Rokhsar, “Bogoliubov quasiparticles, spinons, and spincharged decoupling in superconductors”, Phys. Rev. B, 41 (1990), 11693 |
207. |
A. P. Drozdov, M. I. Eremets et al., “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydrite system”, Nature, 525 (2015), 73 |
208. |
M. Somayazulu, M. Ahart et al., “Evidence for Superconductivity above 260 K in Lanthanum Superhydride at megabar pressures”, Phys. Rev. Lett, 122:2 (2019), 027001 |
209. |
В. Д. Лахно, Э. Л. Нагаев, “Феррон-поляронные состояния носителей тока в антиферромагнитных полупроводниках”, Физика твердого тела, 18 (1976), 3429–3432 |
210. |
В. Д. Лахно, Э. Л. Нагаев, “Магнитострикционные Ферроны”, Физика твердого тела, 20 (1978), 82–86 |
211. |
С. Швебер, Введение в релятивистскую квантовую теорию поля, И.Л, 1963 |