RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics

Izv. Saratov Univ. Math. Mech. Inform., 2005, Volume 5, Issue 1-2, Pages 107–115 (Mi isu680)

$\mathrm{T}$-irreducible extensions for unions of complete graphs
S. G. Kurnosova

References

1. Avizhenis A., “Otkazoustoichivost — svoistvo, obespechivayuschee postoyannuyu rabotosposobnost tsifrovykh sistem”, Tr. In-ta inzhenerov po elektrotekhnike i radioelektronike, 66:1O (1978), 5–25  mathscinet
2. Hayes P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., S-25:9 (1976), 875–884  crossref  mathscinet  zmath
3. Salii V. N., “Dokazatelstva s nulevym razglasheniem v zadachakh o rasshireniyakh grafov”, Vestn. Tomsk. un-ta, 2003, no. 6, Pril., 63–65  mathscinet
4. Kurnosova S. G., T-neprivodimye rasshireniya 3-, 4-, 5- i 6-vershinnykh grafov, Dep. v VINITI 21.06.2003, № 1203-B2003, Saratov, 2003, 18 pp.
5. Kurnosova S. G., “T-neprivodimye rasshireniya dlya nekotorykh klassov grafov”, Teoreticheskie problemy informatiki i ee prilozhenii, 6, Saratov, 2005
6. Kurnosova S. G., Katalog T-neprivodimykh rasshirenii dlya derevev s chislom vershin ne bolee 1O, Dep. v VINITI 30.06.2004, № 1126-82004, Saratov, 2004, 16 pp.
7. Kurnosova S. G., “T-neprivodimye rasshireniya bespovtornykh ob'edinenii polnykh grafov”, Molodezh. Obrazovanie. Ekonomika, Sb. nauch. st., v. 4, Yaroslavl, 2004, 289–292  mathscinet
8. Onlain-entsiklopediya tselochislennykh posledovatelnostei, posledovatelnost nomer AO00931, http://www.research.att.com/ñjas/sequences


© Steklov Math. Inst. of RAS, 2025