RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics

Izv. Saratov Univ. Math. Mech. Inform., 2009, Volume 9, Issue 4(1), Pages 61–78 (Mi isu78)

Dynamics of multilayered thermoviscoelastic plates
V. A. Kovalev

References

1. Mindlin R. D., “Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates”, J. Appl. Mech., 18 (1951), 31–38  zmath
2. Culkovski P. M., Reismann H., “The spherical sandwich shell under axisymmetric static and dynamic loading”, J. Sound and Vibration, 14:2 (1971), 229–240  crossref  adsnasa
3. Lizarev A. D., Rostanina N. B., “Uravneniya svobodnykh kolebanii nepologikh trekhsloinykh sfericheskikh obolochek”, Izv. AN SSSR. Mekhanika tverdogo tela, 1978, no. 4, 142–148
4. Senitskii Yu. E., “Nestatsionarnaya zadacha dinamiki dlya trekhsloinoi nepologoi sfericheskoi obolochki”, Stroitelnaya mekhanika i raschet sooruzhenii, 1990, no. 6, 55–61
5. Senitskii Yu. E., Lychev S. A., “Dinamika trekhsloinykh sfericheskikh obolochek nesimmetrichnoi struktury”, Tr. XVIII Mezhdunar. konf. po teorii obolochek i plastin, v. 1, Saratov, 1997, 47–52
6. Bio M., Variatsionnye printsipy v teorii teploobmena, Energiya, M., 1975, 210 pp.  zmath
7. Dyarmati I., Neravnovesnaya termodinamika. Teoriya polya i variatsionnye printsipy, Mir, M., 1974, 304 pp.
8. Tsigler G., Ekstremalnye printsipy termodinamiki neobratimykh protsessov i mekhanika sploshnoi sredy, Mir, M., 1966, 136 pp.  mathscinet
9. Lychev S. A., Saifutdinov Yu. N., “Uravneniya dvizheniya trekhsloinoi vyazkouprugoi sfericheskoi obolochki”, Vest. Samar. gos. un-ta. Estestvenno-nauchnaya ser., 6(40), 2005, 70–88  mathscinet  zmath
10. Gurtin M. E., “Variational principles for linear initial-value problems”, Quart. Appl. Math., 22 (1964), 252–256  mathscinet  zmath
11. Gurtin M. E., “Variational principles for linear elastodynamics”, Archive for Rational Mechanics and Analysis, 16:1 (1964), 34–50  crossref  mathscinet  zmath  adsnasa
12. Tonti E., “On the variational formulation for linear initial value problems”, Annali di Matematica Pura ed Applicata, 95:1 (1973), 231–259  crossref  mathscinet
13. Belli G., Morosi C., “A variational principle for the dynamic problem of linear coupled thermoelasticity”, Meccanica, 9:4 (1974), 239–243  crossref  mathscinet  zmath
14. Manzhirov A. V., Lychev S. A., “Mathematical modeling of growth processes in nature and engineering: A variational approach”, J. Phys.: Conf. Ser., 181 (2009), 012018, 8 pp.  crossref  isi
15. Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970, 512 pp.  mathscinet  zmath
16. Mikusinskii Ya., Operatornoe ischislenie, Izd-vo inostr. lit-ry, M., 1956, 366 pp.  mathscinet
17. Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Naukova dumka, Kiev, 1973, 248 pp.  zmath
18. Kilchevskii N. A., Osnovy analiticheskoi mekhaniki obolochek, Izd-vo AN USSR, Kiev, 1963, 253 pp.
19. Grigolyuk E. I., Selezov I. T., Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek, Mekhanika tverdykh deformiruemykh tel, 5, VINITI, M., 1973, 272 pp.  zmath
20. Kovalev V. A., Lychev S. A., “Nonstationary vibrations of 3-layered thermoviscoelastic thin-walled structures”, Proceedings of the XXXVII Summer Scool-Conference “Advanced Problems in Mechanics”. St.Peterburg, 2009, 380–388
21. Kovalev V., Lychev S., Nonsymmetric finite integral transformations and their application in thermoviscoelasticity, Proceedings MATHMOD-09, Vienna. ARGESIM Reports No 35, Vienna, 2009, 2604–2607 pp.


© Steklov Math. Inst. of RAS, 2025