|
|
|
Библиографический список
|
|
|
1. |
O. A. Chalykh, “Macdonald polynomials and algebraic integrability”, Advances in Mathematics, 166:2 (2002), 193–259 |
2. |
E. Feigin, I. Makedonskyi, “Generalized Weyl modules, alcove paths and Macdonald polynomials”, Selecta Mathematica, 23:4 (2017), 2863–2897 |
3. |
B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “A differential ideal of symmetric polynomials spanned by Jack polynomials at $b=-(r-1)/(k+1)$”, International Mathematics Research Notices, 2002:23 (2002), 1223–1237 |
4. |
I. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, 1995, 475 pp. |
5. |
M. Noumi, “Macdonald's Symmetric Polynomials as Zonal Spherical Functions on Some Quantum Homogeneous Spaces”, Advances in Mathematics, 123:1 (1996), 16–77 |
6. |
M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Physics Reports, 94:6 (1983), 313–404 |
7. |
A. N. Sergeev, A. P. Veselov, “$BC_{\infty}$ Calogero–Moser operator and super Jacobi polynomials”, Advances in Mathematics, 222:5 (2009), 1687–1726 |
8. |
A. N. Sergeev, A. P. Veselov, “Euler characters and super Jacobi polynomials”, Advances in Mathematics, 226:5 (2011), 4286–4315 |
9. |
V. Serganova, “Characters of irreducible representations of simple Lie superalgebras”, Documenta Mathematica, 1998, 583–593 |
10. |
C. Gruson, V. Serganova, “Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras”, Proceedings of the London Mathematical Society, 101:3 (2010), 852–892 |
11. |
Sergeev A. N., “Lie Superalgebras, Calogero–Moser–Sutherland Systems”, Journal of Mathematical Sciences, 235:6 (2018), 756–785 |