|
|
|
References
|
|
|
1. |
Vatulyan A. O., Yurov V. O., “On the dispersion relations for an inhomogeneous waveguide with attenuation”, Mechanics of Solids, 51:5 (2016), 576–582 |
2. |
Vatul'yan A. O., Yurov V. O., “Dispersion properties of an inhomogeneous piezoelectric waveguide with attenuation”, Acoustical Physics, 63:4 (2017), 369–377 |
3. |
Sohn H., Dutta D., Yang J. Y., Park H. J., DeSimio M., Olson S., Swenson E., “Delamination detection in composites through guided wave field image processing”, Composites Science and Technology, 71:9 (2011), 1250–1256 |
4. |
Su Z., Ye L., Lu Y., “Guided Lamb waves for identification of damage in composite structures: A review”, Journal of Sound and Vibration, 295:3–5 (2006), 753–780 |
5. |
Eremin A. A., Golub M. V., Glushkov E. V., Glushkova N. V., “Identification of delamination based on the Lamb wave scattering resonance frequencies”, NDT&E International, 103 (2019), 145–153 |
6. |
Golub M. V., Doroshenko O. V., Fomenko S. I., Wang Y., Zhang C., “Elastic wave propagation, scattering and localization in layered phononic crystals with arrays of strip-like cracks”, International Journal of Solids and Structures, 212 (2020), 1–22 |
7. |
Grinchenko V. T., Meleshko V. V., Harmonic Vibrations and Waves in Elastic Bodies, Nauka, M., 1981, 282 pp. (in Russian) |
8. |
Glushkov E. V., Glushkova N. V., Evdokimov A. A., “Hybrid numerical-analytical scheme for calculating elastic wave diffraction in locally inhomogeneous waveguides”, Acoustical Physics, 64:1 (2018), 1–9 |
9. |
Alves C., Leitao V., “Crack analysis using an enriched MFS domain decomposition technique”, Engineering Analysis with Boundary Elements, 30:3 (2006), 160–166 |
10. |
Gravenkamp H., “Efficient simulation of elastic guided waves interacting with notches, adhesive joints, delaminations and inclined edges in plate structures”, Ultrasonics, 82 (2018), 101–113 |
11. |
Aleksandrov V. M., Pozharskii D. A., “To the problem of a crack on the elastic strip-half-plane interface”, Mechanics of Solids, 36:1 (2001), 70–76 |
12. |
Lifanov I. K., Method of Singular Integral Equations and Numerical Experiment, TOO “Janus”, M., 1995, 520 pp. (in Russian) |
13. |
Vatulyan A. O., Yurov V. O., “Numerical andasymptotic solution of the problem of oscillations of an inhomogeneous waveguide with an annular crack of finite width”, Acoustical Physics, 66:5 (2020), 441–448 |
14. |
Antonenko N. N., “The problem of a longitudinal crack with a filler in a strip”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 15:3 (2015), 315–322 (in Russian) |
15. |
Doroshenko O. V., Kirillova E. V., Fomenko S. I., “An asymptotic solution of the hypersingular boundary integral equation simulating wave scattering by the interface strip-like crack”, PNRPU Mechanics Bulletin, 2019, no. 2, 86–99 (in Russian) |
16. |
Glushkov E. V., Glushkova N. V., Golub M. V., “Blocking of traveling waves and energy localization due to the elastodynamic diffraction by a crack”, Acoustical Physics, 52:3 (2006), 259–269 |
17. |
Vatul'yan A., Yavruyan O., “An asymptotic approach in problems of crack identification”, Journal of Applied Mathematics and Mechanics, 70:4 (2006), 647–656 |
18. |
Boström A., Golub M., “Elastic SH wave propagation in a layered anisotropic plate with interface damage modeled by spring boundary conditions”, The Quarterly Journal of Mechanics and Applied Mathematics, 62:1 (2009), 39–52 |
19. |
Ma L., Wu L., Zhou Z., Guo L., “Scattering of the harmonic anti-plane shear waves by a crack in functionally graded piezoelectric materials”, Composite Structures, 69:4 (2005), 436–441 |
20. |
Vatul'yan A. O., Baranov I. V., “Determination of the crack configuration in an anisotropic elastic medium”, Acoustical Physics, 51:4 (2005), 385–391 |
21. |
Ijjeh A. A., Ullah S., Kudela P., “Full wavefield processing by using FCN for delamination detection”, Mechanical Systems and Signal Processing, 153 (2021) |
22. |
Christensen R. M., Theory of Viscoelasticity: An Introduction, Academic Press, New York, 1971, 245 pp. |
23. |
Vorovich I. I., Babeshko V. A., Dynamic Mixed Problems of Elasticity for Non-classical Domains, Nauka, M., 1979, 320 pp. (in Russian) |
24. |
Kecs W., Teodorescu P., Introduction to the Theory of Generalized Functions with Applications to Engineering, Editura Tehnica, Bucuresti, 1975, 412 pp. |
25. |
Belotserkovsky S. M., Lifanov I. K., Numerical Methods in Singular Integral Equations and Their Application in Aerodynamics, Elasticity Theory, Electrodynamics, Nauka, M., 1985, 253 pp. (in Russian) |
26. |
Vatul'yan A. O., Yurov V. O., “Analysis of forced vibrations in a functionally gradient cylindrical waveguide”, Acoustical Physics, 64:6 (2018), 649–656 |
27. |
Vatulyan A. O., Coefficient Inverse Problems of Mechanics, Fizmatlit, M., 2019, 272 pp. (in Russian) |