RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Физика

Изв. Сарат. ун-та. Нов. cер. Сер. Физика, 2022, том 22, выпуск 1, страницы 15–45 (Mi isuph3)

Фотоплетизмографическая визуализация гемодинамики и двухмерная оксиметрия
И. Ю. Волков, А. А. Сагайдачный, А. В. Фомин

Список литературы

1. Строканев К. С., “Обзор и классификация современных методов дистанционной фотоплетизмографии лица”, Интеллектуальные системы в производстве., 19:2 (2021), 129–138  crossref  mathscinet
2. Hertzman A. B., “The blood supply of various skin areas as estimated by the photoelectric plethysmograph”, Am. J. Physiol., 124:2 (1938), 328–340  crossref
3. De Trafford J., Lafferty K., “What does photoplethysmography measure?”, Medical & Biological Engineering & Computing., 22:5 (1984), 479–480  crossref
4. Sun Y., “Photoplethysmography revisited : From contact to noncontact, from point to imaging”, IEEE Transactions on Biomedical Engineering., 63:3 (2015), 463–477  crossref
5. Aoyagi T., Kishi M., Yamaguchi K., Watanabe S., “Improvement of the earpiece oximeter”, Japanese Society of Medical Electronics and Biological Engineering, 974 (1974), 90–91
6. Tremper K. K., Barker S. J., “Pulse oximetry”, Anesthesiology., 70:1 (1989), 98–108  crossref
7. Blazek V., Rutten W., Such O., A method for space-resolved, noncontacting and functional visualization of dermal perfusion., German patent, № P196 38 873.2, 1996
8. Wu T., Blazek V., Schmitt H. J., “Photoplethysmography imaging : A new noninvasive and non-contact method for mapping of the dermal perfusion changes”, Proc. SPIE, 2000, no. 4163, 62–70  crossref
9. Takano C., Ohta Y., “Heart rate measurement based on a time-lapse image”, Med. Eng. Phys., 29:8 (2007), 853–857  crossref
10. Verkruysse W., Svaasand L., Nelson J., “Remote plethysmographic imaging using ambient light”, Optics Express., 16:26 (2008), 21434–21445  crossref  adsnasa
11. Kamshilin A. A., Miridonov S., Teplov V., Saarenheimo R., Nippolainen E., “Photoplethysmographic imaging of high spatial resolution”, Biomedical Optics Express., 2:4 (2011), 996–1006  crossref
12. Zaproudina N., Teplov V., Nippolainen E., Lipponen J. A., Kamshilin A. A., Närhi M., Giniatullin R., “Asynchronicity of facial blood perfusion in migraine”, PloS ONE, 8:12 (2013)  crossref  elib
13. Wieringa F., Mastik F., van der Steen A., “Contactless multiple wavelength photoplethysmographic imaging : A first step toward «SpO2 camera» technology”, Ann. Biomed. Eng., 33:8 (2005), 1034–1041  crossref
14. Wieringa F., Mastik F., “In Vitro Demonstration of an SpO2-Camera”, Computers in Cardiology, 2007, no. 34, 749–751
15. Симонян М. А., Посненкова О. М., Киселев А. Р., “Возможности фотоплетизмографии как метода скрининга патологии сердечно-сосудистой системы”, Кардио-ИТ, 7:1 (2020), 102 с.  crossref
16. Семчук И. П., Змиевской Г. Н., Муравская Н. П., Самородов А. В., “Бесконтактный фотоплетизмограф для исследования жизненно важных функций организма”, Приборы., 217:7 (2018), 1–6
17. Акишин А. Д., Семчук И. П., Николаев А. П., “Разработка устройства для контроля состояния организма на основе фотоплетизмографии с использованием технологий цифровой адаптивной фильтрации”, Системный анализ и управление в биомедицинских системах., 19:4 (2020), 100–107  crossref
18. Аванесов А. А., Копелиович М. В., Калинин К. Б., Щербань И. В., “Анализ подходов к оценке частоты сердечных сокращений по видеозаписи”, Труды Северо-Кавказского филиала Московского технического университета связи и информатики, 2020, № 1, 27–40  mathscinet
19. Семчук И. П., Змиевской Г. Н., Муравская Н. П., Волков А., Мурашко М. А., Самородов А. В., “Экспериментальное исследование методов бесконтактной фотоплетизмографии”, Медицинская техника, 2019, № 1, 1–4
20. Kamshilin A. A., Sidorov I. S., Babayan L., Volynsky M. A., Giniatullin R., Mamontov O. V., “Accurate measurement of the pulse wave delay with imaging photoplethysmography”, Biomedical Optics Express., 7:12 (2016), 5138–5147  crossref  elib
21. Kamshilin A. A., Krasnikova T. V., Volynsky M. A., Miridonov S. V., Mamontov O. V., “Alterations of blood pulsations parameters in carotid basin due to body position change”, Scientific Reports., 8:1 (2018), 1–9  crossref
22. Chatterjee S., Phillips J. P., Kyriacou P. A., “Monte carlo investigation of the effect of blood volume and oxygen saturation on optical path in reflectance pulse oximetry”, Biomedical Physics & Engineering Express, 2:6 (2016)  crossref
23. Budidha K., Kyriacou P. A., Abay T. Y., “Optical techniques for blood and tissue oxygenation”, Ref. Modul. Biomed. Sci, 3 (2019), 461–472  crossref
24. Allen J., “Photoplethysmography and its application in clinical physiological measurement”, Physiological Measurement, 28:3 (2007), 1–39  crossref  adsnasa
25. Gastel М., Stuijk S., Haan G., “Camera-based pulseoximetry - validated risks and opportunities from theoretical analysis”, Biomedical Optics Express., 9:1 (2018), 102–119  crossref
26. Gastel М., Stuijk S., Haan G., “New principle for measuring arterial blood oxygenation, enabling motionrobust remote monitoring”, Scientific Reports, 6:1 (2016)  crossref
27. Nitzan M., Adar Y., “Comparison of systolic blood pressure values obtained by photoplethysmography and by korotkoff sounds”, Sensors., 13:11 (2013), 14797–14812  crossref  adsnasa
28. Aoyagi T., “Pulse oximetry : Its invention, theory, and future”, Journal of Anesthesia., 17:4 (2003), 259–266  crossref
29. Lapitan D. G., Tarasov A. P., “Analytical assessment of the modulation depth of photoplethysmographic signal based on the modified Beer-Lambert law”, IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 2019, 103–106  crossref
30. Moco A. V., Stuijk S., de Haan G., “Skin inhomogeneity as a source of error in remote PPG-imaging”, Biomedical Optics Express., 7:11 (2016), 4718–4733  crossref  elib
31. Fine I., “The optical origin of the PPG signal”, Saratov Fall Meeting, Proc. SPIE, no. 9031, 2013, e903103.  crossref
32. Kamshilin A. A., Nippolainen E., Sidorov I. S., Vasilev P. V., Erofeev N. P., Podolian N. P., Romashko R. V., “A new look at the essence of the imaging photoplethysmography”, Scientific Reports., 5:1 (2015), 1–9  crossref
33. Moço A. V., Stuijk S., de Haan G., “Motion robust PPG-imaging through color channel mapping”, Biomedical Optics Express., 7:5 (2016), 1737–1754  crossref  elib
34. Sidorov I. S., Romashko R. V., Koval V. T., Giniatullin R., Kamshilin A. A., “Origin of infrared light modulation in reflectance mode photoplethysmography”, PLoS ONE, 11:10 (2016)  crossref  elib
35. Farrell T. J., Patterson M. S., Wilson B., “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo”, Medical Physics., 19:4 (1992), 879–888  crossref  adsnasa
36. Рогаткин Д. А., “Физические основы оптической оксиметрии”, Медицинская физика., 2:54 (2012), 97–113
37. Marcinkevics Z., Rubins U., “Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths”, Journal of Biomedical Optics, 21:3 (2016)  crossref
38. Verkruysse W., Bartula M., “Calibration of contactless pulse oximetry”, Anesthesia and Analgesia., 124:1 (2017), 136–145  crossref
39. Rubins U., Erts R., Nikiforovs V., “The blood perfusion mapping in the human skin by photoplethysmography imaging”, IFMBE Proceedings, 29 (2010), 304–306  crossref
40. Sun Y., Hu S., Azorin-Peris V., “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise”, Journal of Biomedical Optics, 16:7 (2011)  crossref
41. Zheng J., Hu S., Azorin-Peris V., “Remote simultaneous dual wavelength imaging photoplethysmography : A further step towards 3-D mapping of skin blood microcirculation”, Proc. of SPIE, 6850, 2008, e68500S  crossref
42. Trumpp A., Bauer P. L., “The value of polarization in camera-based photoplethysmography”, Biomedical Optics Express., 8:6 (2017), 2822–2834  crossref
43. Bousefsaf F., Maaoui C., Pruski A., “Continuous wavelet filtering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate”, Biomedical Signal Processing and Control., 8:6 (2013), 568–574  crossref
44. Таранов А. А., Спиридонов И. Н., “Бесконтактное измерение частоты артериального пульса”, Биотехносфера, 3:33 (2014), 43–45
45. Sun Y., Papin C., Azorin-Peris V., Kalawsky R., Greenwald S., Hu S., “Use of ambient light in remote photoplethysmographic systems : Comparison between a high-performance camera and a lowcost webcam”, Journal of Biomedical Optics, 17:3 (2012)  crossref
46. Mironenko Y., Kalinin K., Kopeliovich M., Petrushan M., “Remote photoplethysmography : Rarely considered factors”, Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, 296–297
47. Humphreys K., Ward T., Markham C., “A CMOS Camera-Based Pulse Oximetry Imaging System”, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, no. 2005, 3494–3497  crossref
48. Hsu Y., Lin Y.-L., Hsu W., “Learning-based heart rate detection from remote photoplethysmography features”, IEEE Int. Conf. Acoust. Speech Signal Process, 2014, 4433–4437  crossref
49. Poh M.-Z., McDuff D. J., Picard R. W., “Advancements in noncontact, multiparameter physiological measurements using a webcam”, IEEE Transactions on Biomedical Engineering, 58:1 (2011), 7–11  crossref
50. Fallet S., Moser V., “Imaging Photoplethysmography : What are the Best Locations on the Face to Estimate Heart Rate”, Computing in Cardiology, 43 (2016), 098–236  crossref
51. Kumar M., Veeraraghavan A., “Contact-free camera measurements of vital signs”, SPIE, 2015, 1–4  crossref
52. Shao D., Liu C., Tsow F., Yang Y., Du Z., Iriya R., Yu H., Tao N., “Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system”, IEEE Transactions on Biomedical Engineering., 63:6 (2016), 1091–1098  crossref
53. Feng L., Po L. M., Xu X., Li Y., Ma R., “Motion-resistant remote imaging photoplethysmography based on the optical properties of skin”, IEEE Transactions on Circuits and Systems for Video Technology., 25:5 (2015), 879–891  crossref
54. Zou J., Chen T., Yang X., “Non-Contact Real-Time Heart Rate Measurement Algorithm Based on PPG-Standard Deviation”, Computers, Materials and Continua., 60:3 (2019), 1029–1040  crossref
55. Trumpp A., Schell J., “Vasomotor assessment by camerabased photoplethysmography”, Current Directions in Biomedical Engineering., 2:1 (2016), 199–202  crossref
56. Poh M.-Z., McDuff D. J., Picard R. W., “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation”, Optics Express., 18:10 (2010), 10762–10774  crossref  adsnasa  elib
57. Tulyakov S., Alameda-Pineda X., Ricci E., Yin L., Cohn J. F., Sebe N., “Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions”, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2396–2404
58. Bousefsaf F., Maaoui C., Pruski A., “Automatic selection of webcam photoplethysmographic pixels based on lightness criteria”, J. Med. Biol. Eng., 37:3 (2017), 374–385  crossref
59. Bousefsaf F., Maaoui C., Pruski A., “Continuous wavelet filtering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate”, Biomed. Signal Process. Control., 8:6 (2013), 568–574  crossref
60. Bobbia S., Macwan R., Benezeth Y., Mansouri A., Dubois J., “Unsupervised skin tissue segmentation for remote photoplethysmography”, Pattern Recognit Lett., 124:9 (2017), 1–9  crossref
61. Bobbia S., Luguern D., Benezeth Y., Nakamura K., Gomez R., Dubois J., “Real-Time Temporal Superpixels for Unsupervised Remote Photoplethysmography”, Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018, 1341–1348  crossref
62. Bobbia S., Benezeth Y., Dubois J., “Remote photoplethysmography based on implicit living skin tissue segmentation”, Proc. of the 23rd International Conference on Pattern Recognition (ICPR), 2016, 361–365
63. Wang W., Stuijk S., de Haan G., “Living-skin classification via remote-ppg”, IEEE Transactions on Biomedical Engineering., 64:12 (2017), 2781–2792  crossref
64. Tarassenko L., Villarroel M., Guazzi A., Jorge J., Clifton D., Pugh C., “Non-contact video-based vital sign monitoring using ambient light and auto-regressive models”, Physiological Measurement., 35:5 (2014), 807–831  crossref  adsnasa
65. Chwyl B., Chung A. G., Amelard R., Deglint J., Clausi D. A., Wong A., “SAPPHIRE : Stochastically acquired photoplethysmogram for heart rate inference in realistic environments”, Proc. of the IEEE International Conference on Image Processing (ICIP), 2016, 1230–1234  crossref
66. Chaichulee S., Villarroel M., Jorge J., Arteta C., Green G., McCormick K., Zisserman A., Tarassenko L., “Multi-Task Convolutional Neural Network for Patient Detection and Skin Segmentation in Continuous Non-Contact Vital Sign Monitoring”, Proc. of the 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), 2017, 266–272  crossref
67. Hu S., Peris V., Echiadis A., Zheng J., Shi P., “Development of effective photoplethysmographic measurement techniques : From contact to non-contact and from point to imaging”, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 6550–6553  crossref
68. Villarroel M., Guazzi A., “Continuous non-contact vital sign monitoring in neonatal intensive care unit”, Healthcare Technology Letters., 1:3 (2014), 87–91  crossref
69. Wang W., Brinker A. C. D., Stuijk S., Haan G. D., “Algorithmic principles of remote PPG”, IEEE Trans. Biomed. Eng., 64:7 (2017), 1479–1491  crossref
70. Li X., Chen J., Zhao G., Pietikainen M., “Remote heart rate measurement from face videos under realistic situations”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 4264–4271  crossref
71. Строканев К. С., Коробейников А. В., “Система фотоплетизмографии по видеоизображению лица с использованием эйлерова усиления”, Интеллектуальные системы в производстве., 3:30 (2016), 56–59
72. Wu H.-Y., Rubinstein M., Shih E., Guttag J. V., Durand F., Freeman W. T., “Eulerian video magnification for revealing subtle changes in the world”, ACM Trans. Graph, 31:4 (2012), 65  crossref
73. Lewandowska M., Ruminski J., Kocejko T., Nowak J., “Measuring pulse rate with a webcam - a non-contact method for evaluating cardiac activity”, Federated Conference on Computer Science and Information Systems (FedCSIS), 2011, 405–410
74. De Haan G., Jeanne V., “Robust pulse rate from chrominance-based rppg”, IEEE Transactions on Biomedical Engineering., 60:10 (2013), 2878–2886  crossref
75. De Haan G., Van Leest A., “Improved motion robustness of remote-PPG by using the blood volume pulse signature”, Physiological Measurement., 35:9 (2014), 1913–1926  crossref  adsnasa
76. Wang W., Stuijk S., De Haan G., “A Novel Algorithm for Remote Photoplethysmography : Spatial Subspace Rotation”, IEEE Transactions on Biomedical Engineering., 63:9 (2016), 1974–1984  crossref
77. Hsu G., Ambikapathi A., Chen M., “Deep learning with time-frequency representation for pulse estimation from facial videos”, IEEE International Joint Conference on Biometrics (IJCB), 2017, 383–389  crossref
78. Chen W., McDuff D., “DeepPhys : Videobased physiological measurement using convolutional attention networks”, European Conference on Computer Vision (ECCV), 2018, 356–373
79. Niu X., Shan S., Han H., Chen X., “RhythmNet : End-to-end heart rate estimation from face via spatial-temporal representation”, IEEE Transactions on Image Processing, 2020, no. 29, 2409–2423  crossref  zmath  adsnasa
80. Yu Z., Li X., Zhao G., “Remote photoplethysmography signal measurement from facial videos using spatiotemporal networks”, Proceedings of the British Machine Vision Conference (BMVC), 2019, 1–12
81. Heusch G., Marcel S., “Pulse-based features for face presentation attack detection”, IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018, 1–8  crossref
82. Liu S.-Q., Lan X., Yuen P., “Remote photoplethysmography correspondence feature for 3d mask face presentation attack detection”, European Conference on Computer Vision (ECCV), 2018, 577–594  crossref
83. Speth J., Vance N., Flynn P., Bowyer K., Czajka A., “Remote Pulse Estimation in the Presence of Face Masks”, 2021, arXiv: 2101.04096
84. Mannapperuma K., Holton B. D., “Performance limits of ICA-based heart rate identification techniques in imaging photoplethysmography”, Physiological Measurement., 36:1 (2015), 67–83  crossref  adsnasa
85. Forrester K. R., Tulip J., Leonard C., Stewart C., Bray R. C., “A laser speckle imaging technique for measuring tissue perfusion”, IEEE Transactions on Biomedical Engineering., 51:11 (2004), 2074–2084  crossref
86. Serov A., Steinacher B., Lasser T., “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera”, Optics Express., 13:10 (2005), 3681–3689  crossref  adsnasa
87. Kamshilin A. A., Teplov V., Nippolainen E., Miridonov S., Giniatullin R., “Variability of microcirculation detected by blood pulsation imaging”, PloS ONE, 8:2 (2013)  crossref  elib
88. Iakovlev D., Dwyer V., Hu S., Silberschmidt V., “Noncontact blood perfusion mapping in clinical applications”, Biophotonics : Photonic Solutions for Better Health Care, 9887 (2016), 55–56  crossref
89. Aarts L. A., Jeanne V., Cleary J. P., Lieber C., Nelson J. S., Oetomo S. B., Verkruysse W., “Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit - a pilot study”, Early Hum. Dev., 89:12 (2013), 943–948  crossref
90. Kumar M., Suliburk J., “PulseCam : High-resolution blood perfusion imaging using a camera and a pulse oximeter”, 2016 Annual International Conference of the IEEE Engineering in Medicine and Biology Society., 2016, 3904–3909  crossref
91. Kumar M., Suliburk J., “PulseCam : A camera-based, motion-robust and highly sensitive blood perfusion imaging modality”, Scientific Reports., 10:1 (2020), 1–17  crossref
92. Mamontov O. V., Krasnikova T. V., Volynsky M. A., Anokhina N. A., Shlyakhto E. V., Kamshilin A. A., “Novel instrumental markers of proximal scleroderma provided by imaging photoplethysmography”, Physiological Measurement, 41:4 (2020)  crossref
93. Volynsky M. A., Margaryants N. B., Kamshilin A. A., “Monitoring Changes in Capillary Blood Flow due to Thermal Impact Using Imaging Photoplethysmography”, Imaging and Applied Optics, 2019, ITh3B.4  crossref
94. Kamshilin A. A., Lyubashina O. A., “Assessment of Pain-Induced Changes in Cerebral Microcirculation by Imaging Photoplethysmography”, International Work-Conference on Bioinformatics and Biomedical Engineering. Cham : Springer, 2019, 479–489  crossref
95. Mamontov O. V., Shcherbinin A. V., “Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light”, Applied Sciences, 10:18 (2020), e6192  crossref
96. Kamshilin A. A., Volynsky M. A., “Novel capsaicininduced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography”, The Journal of Headache and Pain, 19:1 (2018), 43 pp.  crossref
97. Volynsky M. A., Mamontov O. V., “Pulse wave transit time measured by imaging photoplethysmography in upper extremities”, Journal of Physics : Conference Series, 737 (2016), e012053  crossref
98. Nirala N., Periyasamy R., Kumar A., “Study of skin flow motion pattern using photoplethysmogram”, International Journal of Advanced Intelligence Paradigms., 16:3-4 (2020), 241–264  crossref
99. Blanik N., Blazek C., Pereira C., Blazek V., Leonhardt S., “Frequency-selective quantification of skin perfusion behavior during allergic testing using photoplethysmography imaging”, Medical Imaging, 9034 (2014), e903429  crossref
100. Allen J., Chen F., “Low-frequency variability in photoplethysmography and autonomic function assessment”, Photoplethysmography., Academic Press, 2022, 277–318  crossref
101. Nishidate I., Hoshi A., Aoki Y., Nakano K., Niizeki K., Aizu Y., “Noncontact imaging of plethysmographic pulsation and spontaneous low-frequency oscillation in skin perfusion with a digital red-green-blue camera”, Dynamics and Fluctuations in Biomedical Photonics XIII, 9707 (2016), e97070L  crossref
102. Nishidate I., Tanabe C., McDuff D. J., Nakano K., Niizeki K., Aizu Y., Haneishi H., “RGB camera-based noncontact imaging of plethysmogram and spontaneous low-frequency oscillation in skin perfusion before and during psychological stress”, Proc. SPIE. Optical Diagnostics and Sensing XIX : Toward Point-of-Care Diagnostics, 10885 (2019), 9–16  crossref
103. McDuff D., Nishidate I., Nakano K., Haneishi H., Aoki Y., Tanabe C., Aizu Y., “Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors”, Scientific Reports., 10:1 (2020), 1–13  crossref  mathscinet
104. Khanoka B., Slovik Y., Landau D., Nitzan M., “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal”, Medical and Biological Engineering and Computing., 42:1 (2004), 80–85  crossref
105. Кубланов В. С., Пуртов К. С., “Дистанционная фотоплетизмография в задаче исследования вариабельности сердечного ритма”, Биомедицинская радиоэлектроника, 2015, № 8, 3—9
106. Kublanov V. S., Purtov K. S., “Researching the possibilities of remote photoplethysmography application to analysis of time-frequency changes of human heart rate variability”, 2015 International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON)., 2015, 87–92  crossref
107. Кульминский Д. Д., Курбако А. В., Сказкина В. В., Прохоров М. Д., Пономаренко В. И., Киселев А. Р., Безручко Б. П., Караваев А. С., “Разработка цифрового датчика пальцевой фотоплетизмограммы”, Известия Саратовского университета. Новая серия. Серия : Физика., 21:1 (2021), 58–68  mathnet  crossref
108. Симонян М. А., Сказкина В. В., Посненкова О. М., Ишбулатов Ю. М., Шварц В. А., Боровкова Е. И., Киселев А. Р., “Анализ спектральных показателей сигнала фотоплетизмограммы и их динамики в зависимости от возраста пациента для задач скрининга сердечно-сосудистых заболеваний”, Профилактическая медицина., 24:8 (2021), 73–79  crossref
109. Karavaev A. S., Borovik A. S., Borovkova E. I., Orlova E. A., Simonyan M. A., Ponomarenko V. I., Kiselev A. R., “Low-frequency component of photoplethysmogram reflects the autonomic control of blood pressure”, Biophysical Journal., 120:13 (2021), 2657–2664  crossref  adsnasa
110. Kiselev A. R., Borovkova E. I., Shvartz V. A., Skazkina V. V., Karavaev A. S., Prokhorov M. D., Bockeria O. L., “Low-frequency variability in photoplethysmographic waveform and heart rate during on-pump cardiac surgery with or without cardioplegia”, Scientific Reports., 10:1 (2020), 1–9  crossref  mathscinet
111. Tankanag A. V., Grinevich A. A., Tikhonova I. V., Chemeris N. K., “An analysis of phase relationships between oscillatory processes in the human cardiovascular system”, Biophysics., 65:1 (2020), 159–164  crossref
112. Tikhonova I. V., Grinevich A. A., Tankanag A. V., “Analysis of phase interactions between heart rate variability, respiration and peripheral microhemodynamics oscillations of upper and lower extremities in human”, Biomedical Signal Processing and Control, 71 (2022), e103091  crossref
113. Tankanag A., Krasnikov G., Mizeva I., “A pilot study : Wavelet cross-correlation of cardiovascular oscillations under controlled respiration in humans”, Microvascular Research, 130 (2020), e103993.  crossref
114. Tankanag A. V., Krasnikov G. V., Chemeris N. K., “Phase Coherence of Finger Skin Blood Flow Oscillations Induced by Controlled Breathing in Humans”, Physics of Biological Oscillators : New Insights into NonEquilibrium and Non-Autonomous Systems., Springer, 2021, 281  crossref
115. Sagaidachnyi A. A., Skripal An. V., Fomin A. V., Usanov D. A., “Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips”, Physiological Measurement, 35:2, 153–166  crossref
116. Sagaidachnyi A. A., Fomin A. V., Usanov D. A., Skripal An. V., “Thermography-based blood flow imaging in human skin of the hands and feet : A spectral filtering approach”, Physiological Measurement., 38:2 (2017), 272–288  crossref  adsnasa  elib
117. Sagaidachnyi A., Fomin A., Usanov D., Skripal An., “Realtime technique for conversion of skin temperature into skin blood flow : Human skin as a low-pass filter for thermal waves”, Computer Methods in Biomechanics and Biomedical Engineering., 22:12 (2019), 1009–1019  crossref
118. Allan D., Chockalingam N., Naemi R., “Validation of a non-invasive imaging photoplethysmography device to assess plantar skin perfusion, a comparison with laser speckle contrast analysis”, Journal of Medical Engineering & Technology., 45:3 (2021), 170–176  crossref
119. Волков И. Ю., Фомин А. В., Майсков Д. И., Залетов И. С., Скрипаль Ан. В., Сагайдачный А. А., “Возможности фотоплетизмографической визуализации периферической гемодинамики в низкочастотном диапазоне”, Методы компьютерной диагностики в биологии и медицине: сборник статей Всероссийской школы-семинара, 2021, 107–110
120. Волков И. Ю., Фомин А. В., Майсков Д. И., Скрипаль Ан. В., Сагайдачный А. А., “Фотоплетизмографическая визуализация гемодинамики и оксиметрии с применением оптического просветления кожи человека”: под ред. Ю. Н. Дубнищева, Н. М. Скорняковой., Оптические методы исследования потоков : труды XVI Международной научно-технической конференции, Издательство «Перо», М., 2021, 107–113
121. Sun Y., Hu S., Azorin-Peris V., Kalawsky R., Greenwald S., “Noncontact imaging photoplethysmography to effectively access pulse rate variability”, Journal of Biomedical Optics, 18:6 (2013)  crossref
122. Таранов А. А., Спиридонов И. Н., “Регистрация фотоплетизмограммы и измерение частоты артериального пульса при помощи вебкамеры”, Биомедицинская радиоэлектроника, 2014, № 10, 71–80
123. Kublanov V., Purtov K., Belkov D., “Remote Photoplethysmography for the Neuro-electrostimulation Procedures Monitoring”, Science and Technology Publications, 4 (2017), 307–314  crossref
124. Kopeliovich M. V., Petrushan M. V., “Optimal Facial Areas for Webcam-Based Photoplethysmography”, Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications)., 26:1 (2016), 150–154  crossref
125. Imms R., Hu S., Azorin-Peris V., Trico M., Summers R., “A high performance biometric signal and image processing method to reveal blood perfusion towards 3D oxygen saturation mapping”, The International Society for Optical Engineering, 8947 (2014)  crossref
126. Blazek C. R., Merk H. F., Schmid-Schoenbein H., Huelsbusch M., Blazek V., “Assessment of allergic skin reactions and their inhibition by antihistamines using photoplethysmography imaging (ppgi)”, J. Allergy Clin. Immun, 117:2 (2006)  crossref
127. Hulsbusch M., Blazek V., “Contactless mapping of rhythmical phenomena in tissue perfusion using ppgi”, Proc. SPIE, 4683, 2002, 110–117  crossref
128. Wieringa F. P., Mastik F., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels : First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering., 34:12 (2006), 1870–1878  crossref
129. Kobayashi L., Chuck C. C., Kim C. K., Luchette K. R., Oster BS. A., Merck D. L., Kirenko I., Zon K. V., Bartula M., Rocque M., Wang H., Capraro G. A., “Pilot Study of Emergency Department Patient Vital Signs Acquisition Using Experimental Video Photoplethysmography and Passive Infrared Thermography Devices”, 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)., 2019, 0023–0032  crossref
130. Cho Y., Julier S. J., Bianchi-Berthouze N., “Instant stress : Detection of perceived mental stress through smartphone photoplethysmography and thermal imaging”, JMIR Mental Health, 6:4 (2019)  crossref
131. Blanik N., Abbas A. K., Venema B., Blazek V., Leonhardt S., “Hybrid optical imaging technology for long-term remote monitoring of skin perfusion and temperature behavior”, Journal of Biomedical Optics, 19:1 (2014)  crossref
132. Paul M., Behr S. C., Weiss C., Heimann K., Orlikowsky T., Leonhardt S., “Spatio-temporal and-spectral feature maps in photoplethysmography imaging and infrared thermograph”, BioMedical Engineering OnLine., 20:1 (2021), 1–54  crossref
133. Humphreys K., Ward T., Markham C., “Noncontact simultaneous dual wavelength photoplethysmography : A further step toward noncontact pulse oximetry”, Review of Scientific Instruments, 78:4 (2007)  crossref
134. Kong L., Zhao Y., “Non-contact detection of oxygen saturation based on visible light imaging device using ambient light”, Optics Express., 21:15 (2013), 17464–17471  crossref  adsnasa
135. Shao D., Liu C., “Noncontact Monitoring of Blood Oxygen Saturation Using Camera and Dual Wavelength Imaging System”, IEEE Transactions on Biomedical Engineering., 63:6 (2016), 1091–1098  crossref
136. Foroughian F., Bauder C. J., “The Wavelength Selection for Calibrating Non Contact Detection of Blood Oxygen Satuartion using Imaging Photoplethysmography”, 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 2018, 1–2
137. Moco A., Verkruysse W., “Pulse oximetry based on photoplethysmography imaging with red and green light”, Journal of Clinical Monitoring and Computing., 35:1 (2021), 123–133  crossref
138. Gastel М., Wang W., Verkruysse W., “Reducing the effects of parallax in camera-based pulse-oximetry”, Biomedical Optics Express., 12:5 (2021), 2813–2824  crossref
139. Gastel М., Verkruysse W., Haan G., “Data-driven calibration estimation for robust remote pulseoximetry”, Appl. Sci, 9:18 (2019)  crossref
140. Bal U., “Non-contact estimation of heart rate and oxygen saturation using ambient light”, Biomedical Optics Express., 6:1 (2015), 86–97  crossref
141. Freitas U. S., “Remote Camera-based Pulse Oximetry”, The Sixth International Conference on eHealth, Telemedicine, and Social Medicine. International Academy, Research and Industry Association (IARIA), 2014, 59–63
142. Guazzi A. R., Villarroel M., “Non-contact measurement of oxygen saturation with an RGB camera”, Biomedical Optics Express., 6:9 (2015), 3320–3338  crossref
143. Addison P. S., “Modular continuous wavelet processing of biosignals : Extracting heart rate and oxygen saturation from a video signal”, Healthcare Technology Letters., 3:2 (2016), 1–6  crossref
144. Mathew J., Tian X., Wu M., “Remote Blood Oxygen Estimation From Videos Using Neural Networks”, 2021, arXiv: 2107.05087
145. Ali A.-N., Khalid G. A., “Non-Contact SpO2 Prediction System Based on a Digital Camera”, Appl. Sci., 11:9 (2021), e4255  crossref
146. Тучин В. В., Оптика биологических тканей : Методы рассеяния света в медицинской диагностике., ООО Издательская фирма “Физико-математическая литература”, М., 2013, 812 с.  adsnasa


© МИАН, 2025