RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Physics

Izv. Sarat. Univ. Physics, 2022, Volume 22, Issue 2, Pages 123–130 (Mi isuph334)

Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers
A. V. Skripal, D. V. Ponomarev, A. A. Komarov, V. E. Sharonov

References

1. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., One-dimensional Microwave Photonic Crystals : New Applications., CRC Press, Taylor Francis Group, 2019, 154 pp.  crossref
2. Belyaev B. A., Khodenkov S. A., Shabanov V. F., “Investigation of frequency-selective devices based on a microstrip 2D photonic crystal.”, Doklady Physics [Physics Reports], 61:4 (2016), 155–159  crossref  adsnasa
3. Fernandes H. C. C., Medeiros J. L. G., Junior I. M. A., Brito D. B., “Photonic crystal at millimeter waves applications”, PIERS Online, 3:5 (2007), 689–694  crossref
4. El-Shaarawy H. B., Coccetti F., Plana R., El-Said M., Hashish E. A., “Defected ground structures (DGS) and uniplanar compact-photonic band gap (UC-PBG) structures for reducing the size and enhancing the out-of-band rejection of microstrip bandpass ring resonator filters”, WSEAS Trans. on Comm, 7:11 (2008), 1112–1121
5. Yao J., Yuan C., Li H., Wu J., Wang Y., Kudryavtsev A. A., Demidov V. I., Zhou Z., “1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission”, AIP Advances, 9:6 (2019), 065302  crossref  adsnasa
6. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kulikov M. Yu., Ponomarev D. V., “Microstrip photonic crystals used for measuring parameters of liquids”, Tech. Phys, 55:8 (2010), 1216–1221  crossref  elib
7. Usanov D. A., Skripal A. V., Romanov A. V., “Complex permittivity of composites based on dielectric matrices with carbon nanotubes”, Tech. Phys, 56:1 (2011), 102–106  crossref  elib
8. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V., “Photonic band gap structures and their application for measuring parameters of semiconductor layers”, Proc. of the IEEE MTT-S Int. Microw. Symp. (IMS), 2015, 1–4  crossref
9. Usanov D. A., Skripal A. V., Ponomarev D. V., Ruzanov O. M., Timofeev I. O., Nikitov S. A., “Application of a microwave coaxial Bragg structures for the measurement of parameters of insulators”, J. Commun. Technol, 65:5 (2020), 541–548  crossref
10. Usanov D. A., Skripal A. V., Abramov A. V., Bogolubov A. S., Skvortsov V. S., Merdanov M. K., “Wideband waveguide matched loads based on photonic crystals with nanometer metal layers”, Proc. of 38th Eur. Microw. Conf. (EuMC), 2008, 484–487  crossref
11. Usanov D. A., Meshchanov V. P., Skripal A. V., Popova N. F., Ponomarev D. V., Merdanov M. K., “Centimeter- and millimeter-wavelength matched loads based on microwave photonic crystals”, Tech. Phys, 62:2 (2017), 243–247  crossref  mathscinet  elib
12. Li S., Luo J., Anwar S., Li S., Lu W. Hong Hang Z., Lai Y., Hou B., Shen M., Wang C., “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation”, Phys. Rev. B, 91:22 (2015), 220301 (R)  crossref  adsnasa
13. Costa D. S., Nohara E. L., Rezende M. C., “Comparative study of experimental and numerical behaviors of microwave absorbers based on ultrathin Al and Cu films”, Mater. Chem. Phys, 194 (2017), 322–326  crossref
14. Ou M., Qiu W., Huang K., Chu S., “Ultra-flexible and high-performance electromagnetic wave shielding film based on CNTF/liquid metal composite films”, J. Appl. Phys, 125:13 (2019), 134906  crossref  adsnasa
15. Asmatulu R., Bollavaram P. K., Patlolla V. R., Alarifi I. M., Khan W. S., “Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding”, Adv. Compos. Hyb. Mater, 3:1 (2020), 66–83  crossref
16. Bengio E. A., Senic D., Taylor L. W., Headrick R. J., King M., Chen P., Little C. A., Ladbury J., Long C. J., Holloway C. L., Babakhani A., Booth J. C., Orloff N. D., Pasquali M., “Carbon nanotube thin film patch antennas for wireless communications”, Appl. Phys. Lett, 114:20 (2019), 203102  crossref  adsnasa
17. Parashkov R., Becker E., Riedl T., Johannes H. H., Kowalsky W., “Large area electronics using printing methods”, Proc. IEEE, 93:7 (2005), 1321–1329  crossref
18. Perelaer J., Smith P., Mager D., Soltman D., Volkman S. K., Subramanian V., Korvink J. G., Schubert U. S., “Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials”, J. Mater. Chem, 20:39 (2010), 8446–8453  crossref  elib
19. Räisänen A., Ala-Laurinaho J., Asadchy V., Diaz-Rubio A., Khanal S., Semkin V., Tretyakov S., Wang X., Zheng J., Alastalo A., Mäkelä T., Sneck A., “Suitability of roll-to-roll reverse offset printing for mass production of millimeter-wave antennas : Progress report.”, Proc. Antennas Propag. Conf. (LAPC), 2016, 300–304  crossref
20. Moonen P. F., Yakimets I., Huskens J., “Fabrication of transistors on flexible substrates : From mass-printing to high-resolution alternative lithography strategies”, Adv. Mater, 24:41 (2012), 5526–5541  crossref
21. Khan S., Lorenzelli L., Dahiya R. S., “Technologies for printing sensors and electronics over large flexible substrates: A review”, IEEE Sens. J, 15:6 (2015), 3164–3185  crossref  adsnasa
22. Krebs F. C., “Fabrication and processing of polymer solar cells: A review of printing and coating techniques”, Sol. Energy Mater. Sol. Cells, 93:4 (2009), 394–412  crossref  elib
23. Clemens W., Fix W., Ficker J., Knobloch A., Ullmann A., “From polymer transistors toward printed electronics”, J. Mater. Res, 19:7 (2004), 1963–1973  crossref  adsnasa
24. Khan Y., Thielens A., Muin S., Ting J., Baumbauer C., Arias A. C., “A New Frontier of Printed Electronics: Flexible Hybrid Electronics”, Adv. Mater, 32:15 (2019), 1905279  crossref
25. Li D., Lai W.–Y., Zhang Y.–Z., Huang W., “Printable Transparent Conductive Films for Flexible Electronics”, Adv. Mater, 30:10 (2018), 1704738  crossref
26. Kim D., Moon J., “Highly conductive ink jet printed films of nanosilver particles for printable electronics”, Electrochem. Solid-State Lett, 8:11 (2005), J30-J33  crossref
27. Chen L. F., Ong C. K., Neo C. P., Varadan V. V., Varadan V. K., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons Ltd, Chichester, West Sussex, England, 2004, 537 pp.  crossref
28. Lee M.-H. J., Collier R. J., “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC”, IEEE Trans. Instrum. Meas, 54:6 (2005), 2412–2415  crossref  adsnasa
29. Poo Y., Wu R.-X., Fan X., Xiao J. Q., “Measurement of ac conductivity of gold nanofilms at microwave frequencies”, Rev. Sci. Instrum, 81:6 (2010), 064701  crossref  adsnasa
30. Wang X.-C., Díaz-Rubio A., Tretyakov S. A., “An accurate method for measuring the sheet impedance of thin conductive films at microwave and millimeter-wave frequencies”, IEEE Trans. Microw. Theory Techn, 65:12 (2017), 5009–5018  crossref  adsnasa
31. Krupka J., Strupinski W., Kwietniewski N., “Microwave conductivity of very thin graphene and metal films”, J. Nanosci. Nanotechnol, 11:4 (2011), 3358–3362  crossref  elib
32. Krupka J., Mazierska J., “Contactless measurements of resistivity of semiconductor wafers employing singlepost and split-post dielectric-resonator techniques”, IEEE Trans. Instrum. Meas, 56:5 (2007), 1839–1844  crossref  adsnasa  elib
33. Skripal A. V., Ponomarev D. V., Komarov A. A., “Tamm resonances in the structure 1-D microwave photonic crystal / conducting nanometer layer”, IEEE Trans. Microw. Theory Techn, 68:12 (2020), 5115–5122  crossref  adsnasa
34. Gazzano O., Vasconcellos S. M. de, Gauthron K., Symonds C., Bloch J., Voisin P., Bellessa J., Lemaître A., Senellart P., “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission”, Phys. Rev. Lett, 107:24 (2011), 247402  crossref  adsnasa  elib
35. Zhou H., Yang G., Wang K., Long H., Lu P., “Multiple optical Tamm states at a metal-dielectric mirror interface”, Opt. Lett, 35:24 (2010), 4112–4114  crossref  adsnasa  elib
36. Chang C. Y., Chen Y. H., Tsai Y. L., Kuo H. C., Chen K. P., “Tunability and optimization of coupling efficiency in Tamm plasmon modes”, IEEE Journal of Selected Topics in Quantum Electronics, 21:4 (2015), 4600206, 262–267  crossref  adsnasa
37. Isić G., Vuković S. Jakšić Z., Belić M., “Tamm plasmon modes on semi-infinite metallodielectric superlattices”, Sci. Rep, 7:1 (2017), 3746  crossref  adsnasa
38. Cheng H.-C., Kuo C.-Y., Hung Y.-J., Chen K.-P., Jeng S.-C., “Liquid-crystal active Tamm-plasmon devices”, Phys. Rev. Appl, 9:6 (2018), 064034  crossref  adsnasa
39. Jeng S.-C., “Applications of Tamm plasmon-liquid crystal devices”, Liquid Crystals, 47:8 (2020), 1–9  crossref
40. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., “Microwave measurements of thickness of nanometer metal layers and conductivity of semiconductor in structures 'metal-semiconductor.”, Proceedings of the XVI International Conference on Microwaves, Radar and Wireless Communications MIKON-2006, 3 (2006), 874–877  crossref
41. Usanov D. A., Skripal A. V., Abramov A. V., Bogolyubov A. S., Kalinina N. V., “Measurements of thickness of metal films in sandwich structures by the microwave reflection spectrum”, Proc. of 36th Eur. Microw. Conf. (EuMC), 2006, 921–924  crossref
42. Seeger K., Semiconductor Physics: An Introduction, Springer-Verlag, 2004, 538 pp.  crossref
43. Blakemore J. S., “Semiconducting and other major properties of gallium arsenide”, J. Appl. Phys, 53:10 (1982), R123-R181  crossref
44. Sotoodeh M., Khalid A. H., Rezazadeh A. A., “Empirical low-field mobility model for III-V compounds applicable in device simulation codes”, J. Appl. Phys, 87:6 (2000), 2890–2900  crossref  adsnasa
45. Molnar B., Kenedy T. A., “Evaluation of S- and Seimplanted GaAs by contactless mobility measurement.”, Journal of Electrochemical Society : Solid-state Science and Technology, 125:8 (1978), 1318–1320  crossref
46. Usanov D. A., Nikitov S. A., Skripal A. V., Ponomarev D. V., Latysheva E. V., “Multiparametric measurements of epitaxial semiconductor structures with the use of one-dimensional microwave photonic crystals”, J. Commun. Technol, 61:1 (2016), 42–49  crossref  elib
47. Bo G., Ren L., Xu X., Du Y., Dou S., “Recent progress on liquid metals and their applications”, Adv. Phys. : X, 3:1 (2018), 411–442  crossref
48. Xie Z., Avila R., Huang Y., Rogers J. A., “Flexible and Stretchable Antennas for Biointegrated Electronics”, Adv. Mater, 32:15 (2019), 1902767  crossref
49. Bakar H. A., Rahim R. A., Soh P. J., Akkaraekthalin P., “Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future”, Sensors, 21:3 (2021), 827  crossref  adsnasa


© Steklov Math. Inst. of RAS, 2025