RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Физика

Изв. Сарат. ун-та. Нов. cер. Сер. Физика, 2022, том 22, выпуск 4, страницы 350–356 (Mi isuph468)

Различия оптических свойств мышечной ткани крысы при комнатной и физиологической температурах
Е. А. Гамаюнова, А. А. Доронкина, Е. Н. Лазарева, Д. К. Тучина, В. И. Кочубей, И. Ю. Янина

Список литературы

1. Troy T. L., Thennadil S. N., “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm”, Journal of Biomedical Optics, 6:2 (2001), 167–176  crossref
2. Laufer J., Simpson R., Kohl M., Cope M., “Effect of temperature on the optical properties of ex vivo human dermis and subdermis”, Phys. Med. Biol, 43 (1998), 2479–2489  crossref
3. Troy T. L., Page D. L., Sevick-Muraca E. M., “Optical properties of normal and diseased breast tissues: Prognosis for optical mammography”, J. Biomed. Opt, 1 (1996), 342–355  crossref
4. Jaywant S., Wilson B., Patterson M., Lilge L., Flotte T., “Temperature-dependent changes in the optical absorption and scattering spectra of tissues: Correlation with ultrastructure”, Laser-Tissue Interaction IV, Proc. SPIE, 1882, 1993  crossref
5. Nagarajan V. K., Yu B., “Monitoring of Tissue Optical Properties During Thermal Coagulation of Ex Vivo Tissues”, Lasers in Surgery and Medicine, 48 (2016), 686–694  crossref
6. Ao H. L., Xing D., Wei H. J., Gu H. M., Wu G. Y., Lu J. J., “Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1100nm”, Phys. Med. Biol., 53 (2008), 2197–2206  crossref
7. Thomsen S., Jacques S., Flock S., “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium”, Proc Laser-Tissue Interaction, 1202:2 (1990), 11  crossref
8. Chung S. H., Cerussi A. E., Merritt S. I., Ruth J., Tromberg B. J., “Non-invasive tissue temperature measurements based on quantitative DOS of water”, Phys. Med. Biol, 55 (2010), 3753–3765  crossref
9. Collins J. R., “Change in the infra-red absorption spectrum of water with temperature”, Phys. Rev, 26 (1925), 0771–0779  crossref
10. Otal E. H., Inon F. A., Andrade F. J., “Monitoring the temperature of dilute aqueous solutions using near-infrared water absorption”, Appl. Spectrosc., 57 (2003), 661–6666  crossref
11. Kelly J. J., Kelly K. A., Barlow C. H., “Tissue temperature by near-infrared spectroscopy”, Proc. SPIE, 2389, 1995, 818–28  crossref
12. Libnau F. O., Kvalheim O. M., Christy A. A., Toft J., “Spectra of water in the nearinfrared and midinfrared region”, Vib. Spectrosc., 7 (1994), 243–254  crossref
13. Nachabé R., Hendriks B. H. W., Desjardins A. E., van der Voort Marjolein, Martin B. van der Mark., “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm”, Journal of Biomedical Optics, 15:3 (2010), 037015  crossref
14. Merritt S. I., Combination of broadband diffuse optical spectroscopy with magnetic resonance imaging, PhD Thesis, University of California, Irvine, 2005, 160 pp.
15. Pimentel G. C., McClellan A. L., The Hydrogen Bond, W. Y. Freeman, San Francisco, 1960, 50 pp.
16. Chung S. H., Cerussi A. E., Klifa C., Baek H. M., Birgul O., Gulsen G., Merritt S. I., Hsiang D., Tromberg B. J., “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy”, Phys. Med. Biol., 53 (2008), 6713–6727  crossref
17. Buijs K., Choppin G. R., “Near-infrared studies of structure of water. 1. Pure water”, J. Chem. Phys, 39 (1963), 2035–2041  crossref
18. Hollis V. S., Non-invasive monitoring of brain tissue temperature by near-infrared spectroscopy, PhD Thesis, University College, London, 2002, 263 pp.
19. Белов Н. П., Лапшов С. Н., Патяев А. Ю., Шерстобитова А. С., Яськов А. Д., “Температурная зависимость показателя преломления водных растворов этиленгликоля и пропиленгликоля”, Научно-технический вестник информационных технологий, механики и оптики, 2012, № 2 (78), 138–139
20. Генина Э. А., Башкатов А. Н., Козинцева М. Д., Тучин В. В., “ОКТ-исследование оптического просветления мышечной ткани in vitro с помощью 40$\%$-ного раствора глюкозы”, Оптика и спектроскопия, 120:1 (2016), 27–35  crossref
21. Bashkatov A. N., Berezin K. V., Dvoretskiy K. N., Chernavina M. L., Genina E. A., Genin V. D., Kochubey V. I., Lazareva E. N., Pravdin A. B., Shvachkina M. E., Timoshina P. A., Tuchina D. K., Yakovlev D. D., Yakovlev D. A., Yanina I. Yu., Zhernovaya O. S., Tuchin V. V., “Measurement of tissue optical properties in the context of tissue optical clearing”, J. Biomed. Opt., 23:9 (2018), 091416  crossref
22. Ghita A., Matousenk P., Stone N., “Sensitivity of Transmission Raman Spectroscopy Signals to Temperature of Biological Tissues”, Scientific Reports, 2018, no. 8, 8379  crossref
23. International Guiding Principles for Biomedical Research Involving Animals. CIOMS and ICLAS, http://www.cioms.ch/index.php/12-newsflash/227-cioms-and-iclas-release-the-newinternational-guiding-principles-for-biomedical-researchinvolving-animals (дата обращения: 24.06.2022)
24. Yanina I. Yu., Kozlova E. A., Kochubey V. I., “Changes in the spectral characteristics of biological tissues depending on temperature”, Proc. of SPIE, 11641, 2021, 116410X  crossref
25. Inverse Adding-Doubling, https://omlc.org/software/iad/index.html (дата обращения: 24.06.2022)
26. Тучин В. В., Оптика биологических тканей. Методы рассеяния света в медицинской диагностике, Физматлит, М., 2013, 812 с.


© МИАН, 2025