RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Izv. Vyssh. Uchebn. Zaved. Mat., 2021, Number 5, Pages 23–32 (Mi ivm9673)

On some topological characteristics of harmonic polynomials
B. M. Darinskii, A. V. Loboda, D. S. Saiko

References

1. Rabotnov Yu.N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988
2. Lotov K.V., Fizika sploshnykh sred, In-t kompyut. issledov, M.–Izhevsk, 2002
3. Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, v. 7, Fizika sploshnykh sred, Mir, M., 1967
4. Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1982  mathscinet
5. Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. III, Kvantovaya mekhanika, Fizmatlit, 2008
6. Borisovich Yu.G., Darinskii B.M., Kunakovskaya O.V., “Primenenie topologicheskikh metodov dlya otsenki chisla prodolnykh uprugikh voln v kristallakh”, Teor. i matem. fizika, 94:1 (1993), 146–152  mathnet  mathscinet  zmath
7. Eastwood M., Ezhov V., “Homogeneous Hypersurfaces with Isotropy in Affine Four-Space”, Tr. MIAN, 235, 2001, 57–70  mathnet  mathscinet  zmath
8. Vorotnikov D.A., Darinskii B.M., Zvyagin V.G., “Topologicheskii podkhod k issledovaniyu akusticheskikh osei v kristallakh”, Kristallografiya, 51:1 (2006), 112–117  adsnasa
9. Darinskii B.M., Efanova N.D., Kandrashin V.Yu., Teoriya atoma vodoroda v dekartovoi sisteme koordinat, VGU, Voronezh, 2015
10. Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987


© Steklov Math. Inst. of RAS, 2025