RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Сибирского федерального университета. Серия «Математика и физика»

Журн. СФУ. Сер. Матем. и физ., 2024, том 17, выпуск 2, страницы 151–161 (Mi jsfu1144)

Optimal control for an elastic frictional contact problem
Ahlem Benraouda

Список литературы

1. C.Baiocchi, A.Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley, Chichester, 1984  mathscinet  zmath
2. V.Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing, Boston, 1984  mathscinet  zmath
3. H.Brézis, “Equations et inéquations non linéaires dans les espaces vectoriels en dualité”, Ann. Inst. Fourier (Grenoble), 18 (1968), 115–175  crossref  mathscinet  zmath
4. A.Capatina, Variational Inequalities and Frictional Contact Problems, Advances in Mechanics and Mathematics, 31, Springer, New York, 2014  crossref  mathscinet  zmath
5. A.Friedman, “Optimal control for variational inequalities”, SIAM J. Control Optim., 24:3 (1986), 439–451  crossref  mathscinet  zmath
6. W.Han, M.Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, Americal Mathematical Society, Providence, RI, 2002  crossref  mathscinet  zmath
7. I.Hlaváček, J Haslinger, J.Nečas, J.Lovíšek, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988  mathscinet  zmath
8. N.Kikuchi, J.T.Oden, “Theory of variational inequalities with applications to problems of flow through porous media”, Int. J. Engng. Sci., 18 (1980), 1173–1284  crossref  mathscinet  zmath
9. T.A.Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002  mathscinet  zmath
10. J.-L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthiers-Villars, Paris, 1969  mathscinet
11. R.Mignot, J.P.Puel, “Optimal control in some variational inequalities”, SIAM J. Control Optim., 22 (1984), 466–476  crossref  mathscinet  zmath
12. S.Migórski, A.Ochal, M.Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013  crossref  mathscinet  zmath
13. M.Shillor, M.Sofonea, J.J.Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys., 655, Springer, Berlin, 2004  crossref  zmath
14. M.Sofonea, A.Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, 2012  zmath
15. M.Sofonea, S.Migórski, Variational Hemivariational Inequalities with Applications, Chapman and Hall/CRC, New York, 2017  mathscinet
16. A.Touzaline, “Optimal control of a frictional contact problem”, Acta Mathematicae Applicatae Sinica, English Series, 31 (2015), 991–1000  crossref  mathscinet  zmath
17. E.Zeidler, Nonlinear Functional Analysis and its Applications, v. IV, Applications to Mathematical Physics, Springer-Verlag, New York  mathscinet


© МИАН, 2025