RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Сибирского федерального университета. Серия «Математика и физика»

Журн. СФУ. Сер. Матем. и физ., 2024, том 17, выпуск 2, страницы 220–228 (Mi jsfu1151)

Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems
Azam A. Imomov, Sarvar B. Iskandarov

Список литературы

1. K.B.Athreya, P.E.Ney, Branching processes, Springer, New York, 1972  mathscinet  zmath
2. N.H.Bingham, C.M.Goldie, J.L.Teugels, Regular variation, Cambridge, 1987  mathscinet  zmath
3. T.E.Harris, The theory of branching processes, Springer-Verlag, 1963  mathscinet  zmath
4. A.A.Imomov, E.E.Tukhtaev, “On application of slowly varying functions with remainder in the theory of Galton-Watson branching process”, Jour. Siber. Fed. Univ.: Math. Phys., 12:1 (2019), 51–57  crossref  mathscinet
5. A.A.Imomov, “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Prob. and math. stat., 39:1 (2019), 61–73  crossref  mathscinet  zmath
6. A.A.Imomov, E.E.Tukhtaev, “On asymptotic structure of critical Galton-Watson branching processes allowing immigration with infinite variance”, Stochastic Models, 39:1 (2023), 118–140  crossref  mathscinet  zmath
7. H.Kesten, P.E.Ney, F.L.Spitzer, “The Galton-Watson process with mean one and finite variance”, Jour. Appl. Prob., 11:4 (1966), 579–611  mathscinet  zmath
8. E.Seneta, “The Galton-Watson process with mean one”, Jour. Appl. Prob., 4 (1967), 489–495  crossref  mathscinet  zmath
9. R.S.Slack, “A branching process with mean one and possible infinite variance”, Wahrscheinlichkeitstheor und Verv. Geb., 9 (1968), 139–145  crossref  mathscinet  zmath


© МИАН, 2025