RUS  ENG
Full version
JOURNALS // Journal of Siberian Federal University. Mathematics & Physics

J. Sib. Fed. Univ. Math. Phys., 2013, Volume 6, Issue 3, Pages 283–297 (Mi jsfu314)

Degeneration of Boundary Layer at Singular Points
Evgueniya Dyachenko, Nikolai Tarkhanov

References

1. M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Uspekhi Mat. Nauk, 19:3 (1964), 53–161 (in Russian)  mathnet  mathscinet  zmath
2. A. Antoniouk, N. Tarkhanov, The Dirichlet problem for the heat equation in domains with cuspidal points on the boundary, Operator Theory: Advances and Applications, Birkhäuser, Basel et al., 2012
3. V. N. Aref'ev, L. A. Bagirov, “Asymptotic behavior of solutions of the Dirichlet problem for a parabolic equation in domains with singularities”, Mat. Zam., 59:1 (1996), 12–23 (in Russian)  mathnet  crossref  mathscinet
4. G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231  crossref  mathscinet
5. L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126:1–2 (1971), 11–51  mathscinet  zmath
6. A. S. Demidov, “Asymptotic behaviour of the solution of a boundary value problem for elliptic pseudodifferential equations with a small parameter multiplying the highest operator”, Trans. Moscow Math. Soc., 32 (1975), 119–146  mathnet  mathscinet  zmath
7. G. I. Eskin, “Asymptotics of solutions of elliptic pseudodifferential equations with a small parameter”, Soviet Math. Dokl., 14:4 (1973), 1080–1084  mathscinet  zmath
8. G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Amer. Math. Soc., Providence, RI, 1980  mathscinet
9. L. S. Frank, Spaces and Singular Perturbations on Manifolds without Boundary, North Holland, Amsterdam, 1990  mathscinet
10. K. Friedrichs, “Asymptotic phenomena in mathematical physics”, Bull. Amer. Math. Soc., 61 (1955), 485–504  crossref  mathscinet  zmath
11. M. Gevrey, “Sur les équations partielles du type parabolique”, J. Math. pure appl. Paris, 9 (1913), 305–471; 10 (1914), 105–148  zmath
12. W. M. Greenlee, “Rate of convergence in singular perturbations”, Ann. Inst. Fourier (Grenoble), 18:2 (1968), 135–191  crossref  mathscinet  zmath
13. D. Huet, “Phénomènes de perturbation singulière dans les problèmes aux limites”, Ann. Inst. Fourier (Grenoble), 11 (1961), 385–475  crossref  mathscinet
14. A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1992  mathscinet
15. A. I. Karol', “Operator-valued pseudodifferential operators and the resolvent of a degenerate elliptic operator”, Mat. Sb., 121(163):4 (1983), 562–575  mathnet  mathscinet
16. J. Kevorkian, J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, Berlin–New York, 1981  mathscinet  zmath
17. V. A. Kondrat'ev, “Boundary problems for parabolic equations in closed domains”, Trans. Moscow Math. Soc., 15 (1966), 400–451  mathnet  mathscinet
18. E. F. Mishchenko, N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations, Plenum Press, New York, 1980  mathscinet  zmath
19. S. A. Nazarov, “Vishik–Lyusternik method for elliptic boundary value problems in domains with conical points. I–III”, Sib. Mat. Zh., 22:4 (1981), 142–163  mathnet  mathscinet  zmath; 22:5 (1981), 132–152  mathnet  mathscinet  zmath; 25:6 (1984), 106–115 (in Russian)  mathnet  mathscinet  zmath
20. A. L. Pereira, M. C. Pereira, “An eigenvalue problem for the biharmonic operator on $\mathbb{Z}_2$-symmetric regions”, J. Lond. Math. Soc., 77:2 (2008), 424–442  crossref  mathscinet  zmath
21. H. Poincaré, “Sur les intégrales irrégulières des équations linéaires”, Acta Math., 8 (1886), 295–344  crossref  mathscinet
22. L. Prandtl, “Über Flüssigkeitsbewegung bei kleiner Reibung”, Verhandl. III. Int. Math.-Kongresses, Teubner, Leipzig, 1905, 484–491
23. V. Rabinovich, B.-W. Schulze, N. Tarkhanov, “A calculus of boundary value problems in domains with non-Lipschitz singular points”, Math. Nachr., 215 (2000), 115–160  crossref  mathscinet  zmath  isi
24. I. B. Simonenko, “A new general method for investigating linear operator equations of the singular integral operator type. I; II”, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 567–586  mathnet  mathscinet  zmath; 757–782 (in Russian)  mathnet  mathscinet  zmath
25. M. I. Vishik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk, 12:5 (77) (1957), 3–122 (in Russian)  mathnet  mathscinet  zmath
26. L. R. Volevich, “The Vishik–Lyusternik method in elliptic problems with small parameter”, Trans. Moscow Math. Soc., 67 (2006), 87–125  crossref  mathscinet  zmath
27. W. Wasow, Asymptotic expansions for ordinary differential equations, Wiley, 1966  mathscinet


© Steklov Math. Inst. of RAS, 2025