|
|
|
Список литературы
|
|
|
1. |
C. Alexander, “Semi-developable space and quotient images of metric spaces”, Pacific J. Math., 37 (1971), 277–293 |
2. |
E. Arias-Castro, Some theory for ordinal embedding, 2015, arXiv: 1501.02861 [math.ST] |
3. |
A.V. Arkhangel'skii, L.S. Pontryagin, General Topology I: Basic Concepts and Constructions Dimension Theory, Springer, 1990 |
4. |
I. Borg, P.J. Groenen, Modern multidimensional scaling: Theory and applications, Springer, 2005 |
5. |
S. Budalakoti, R. Akella, A.N. Srivastava, E. Turkov, Anomaly Detection in Large Sets of High-Dimensional Symbol Sequences, NASA/TM-2006-214553, September, 2006 |
6. |
M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, “Partial metric spaces”, Amer. Math. Monthly, 116:8 (2009), 708–718 |
7. |
E. Chávez, G. Navarro, “A Probabilistic Spell for the Curse of Dimensionality”, ALENEX'01, LNCS, 2153, Springer, 2001, 147–160 |
8. |
E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, “Searching in metric spaces”, ACM Computing Surveys, 33:3 (2001), 273–321 |
9. |
S. Chen, B. Ma, K. Zhang, “On the similarity metric and the distance metric”, Theoretical Computer Science, 410:24–25 (2009), 2365–2376 |
10. |
P. Corazza, “Introduction to metric-preserving functions”, American Mathematical Monthly, 104:4 (1999), 309–323 |
11. |
M.M. Deza, E. Deza, Encyclopedia of Distances, Springer, 2009 |
12. |
A.J. Dobson, “Unrooted Trees for Numerical Taxonomy”, Journal of Applied Probability, 11:1 (1974), 32–42 |
13. |
N. J. P. van Eck, L. Waltman, How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures, № ERS-2009-001-LIS, ERIM report series research in management Erasmus Research Institute of Management, Erasmus Research Institute of Management, 2009 http://hdl.handle.net/1765/14528 |
14. |
C.H. Elzinga, M. Studer, “Normalization of Distance and Similarity in Sequence Analysis”, LaCOSA II (Lausanne, June 8–10, 2016), 445–468 |
15. |
D.J. Greenhoe, Properties of distance spaces with power triangle inequalities, 2016 |
16. |
R. Heckmann, Workshop Domains II, Informatik Berichte 96-04, Technische Universitat Braunschweig, 1996 |
17. |
A. Islam, D. Inkpen, “Semantic text similarity using corpus-based word similarity and string similarity”, ACM Transactions on Knowledge Discovery from Data, 2:2 (2008), 1–25 |
18. |
J.C. Kelly, “Bitopological spaces”, Proc. London Math. Soc., 13:3 (1963), 71–89 |
19. |
M. Kleindessner, U. von Luxburg, “Uniqueness of Ordinal Embedding JMLR”, Workshop and Conference Proceedings, 35, 2014, 1–28 |
20. |
L. Leydesdorff, L. Vaughan, “Co-occurrence matrices and their applications in information science: extending ACA to the web environment”, Journal of the American Society for Information Science and Technology, 57:12 (2006), 1616–1628 |
21. |
S. Lim, “Cleansing Noisy City Names in Spatial Data Mining”, 2010 International Conference on Information Science and Applications (ICISA) (2010) |
22. |
S.G. Matthews, “Partial metric topology”, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728, 1994, 183–197 |
23. |
E. Mêgnigbêto, “Controversies arising from which similarity measures can be used in co-citation analysis”, Malaysian Journal of Library $\&$ Information Science, 18:2 (2013), 25–31 |
24. |
G. Navarro, R. Paredes, N. Reyes, C. Bustos, “An empirical evaluation of intrinsic dimension estimators”, Information Systems, 64 (2017), 206–218 |
25. |
V.W. Niemytzki, “On the “third axiom of metric space””, Trans. Amer. Math. Soc., 29 (1927), 507–513 |
26. |
K. Nyirarugira, T. Kim, “Stratified gesture recognition using the normalized longest common subsequence with rough sets”, Signal Processing: Image Communication, 30 (2015), 178–189 |
27. |
S.J. O'Neill, Two topologies are better than one, Technical report, University of Warwick, April 1995 |
28. |
R.N. Shepard, “The analysis of proximities: Multidimensional scaling with an unknown distance function. I”, Psychometrika, 27 (1962), 125–140 |
29. |
R.N. Shepard, “Representation of structure in similarity data: Problems and prospects”, Psychometrika, 39:4 (1974), 373–422 |
30. |
T. Skopal, “On fast non-metric similarity search by metric access methods”, Proc. 10th International Conference on Extending Database Technology, EDBT'06, LNCS, 3896, Springer, 2006, 718–736 |
31. |
T. Skopal, B. Bustos, “On nonmetric similarity search problems in complex domains”, ACM Computing Surveys, 43:4 (2011), 34 |
32. |
A. Tversky, “Features of similarity”, Psychological Review, 84 (1977), 327–352 |
33. |
A. Tversky, I. Gati, “Similarity, separability and the triangle inequality”, Psychological Review, 89 (1982), 123–154 |
34. |
A. Ugon, T. Nicolas, M. Richard, P. Guerin, P. Chansard, C. Demoor, L. Toubiana, “A new approach for cleansing geographical dataset using Levenshtein distance, prior knowledge and contextual information”, Studies in health technology and informatics, 210 (2015), 227–229 |
35. |
M. Vlachos, G. Kollios, D. Gunopulos, “Discovering similar multidimensional trajectories”, Proceedings of the International Conference on Data Engineering, ICDE '02,, IEEE Computer Society Press, San Jose, CA, USA, 2002, 673–684 |
36. |
W.A. Wilson, “On quasi-metric spaces”, Am. J. Math., 53 (1931), 675–684 |
37. |
S.V. Znamenskij, “Models and axioms for similarity metrics”, Programmnye systemy: Theoriya i prilozheniya, 8:4 (2017), 247–357 (in Russian) |
38. |
S. Znamenskii, V. Dyachenko, “An Alternative Model of the Strings Similarity”, Selected Papers of the XIX International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2017, CEUR Workshop Proceedings, 177–183 (in Russian) |