RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Сибирского федерального университета. Серия «Математика и физика»

Журн. СФУ. Сер. Матем. и физ., 2019, том 12, выпуск 2, страницы 185–190 (Mi jsfu748)

Symmetries of differential ideals and differential equations
Oleg V. Kaptsov

Список литературы

1. S. Lie, Theory of Transformation Groups I: General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation, Springer-Verlag, Berlin–Heidelberg, 2015  mathscinet  zmath
2. L.V. Ovsyannikov, Group Analysis of Differential Equations, English transl., ed. W. F. Ames, Academic Press, New York, 1982  mathscinet  zmath
3. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985  mathscinet  zmath
4. V.K Andreev, O.V. Kaptsov V. V. Pukhnachev, A.A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Netherlands, 2010  mathscinet
5. P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, NY, 1986  mathscinet  zmath
6. G. Bluman, S. Kumei, Symmetries and Differential Equations, Springer, NY, 1989  mathscinet  zmath
7. E. Noether, “Invariante Variationsprobleme”, Nachr Konig, Gesell Wissen, Gottingen, Math.-Phys. Kl., 1918, 235–257  zmath  adsnasa
8. I. Kaplansky, Lie Algebras and Locally Compact Groups, University Chicago Press, 1971  mathscinet  zmath
9. E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, NY, 1973  mathscinet  zmath
10. N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, v. I, Symmetries, Exact Solutions, and Conservation Laws, CRC Press Published, 1993  mathscinet


© МИАН, 2025