|
|
|
СПИСОК ЛИТЕРАТУРЫ
|
|
|
1. |
A. Dragon, “Polymerase chain reaction”, Sci. Am., 278:5 (1998), 112 |
2. |
E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, “Design and self-assembly of twodimensional DNA crystals”, Nature, 394:6693 (1998), 539–544 |
3. |
N. C. Seeman, “Nanotechnology and helix the double”, Sci. Am., 290:6 (2004) |
4. |
M. D. Wang, H. Yin, R. Landick, J. Gelles, SM. Block, “Stretching DNA with optical tweezers”, Biophyz. J., 72:3 (1997), 1335–1346 |
5. |
C. Bustamante, D. J. Keller, “Scanning Force Microscopy”, Biology Physics Today, 48 (1995), 32 |
6. |
T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, V. Croguette, “The elasticity of a single supercoiled DNA molecule”, Science, 271:5257 (1996), 1835–1837 |
7. |
U. Bockelmanan, B. Essevaz-Roulet, F. Heslot, “DNA strand separation studied by single molecule force measurements”, Phys. Rev. E, 58 (1998), 2386 |
8. |
E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature, 391 (1998), 775–778 |
9. |
D. D. Eley, D. I. Spivey, “Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state”, Trans. Faraday Soc., 58 (1962), 411–415 |
10. |
S. R. Roth, One-Dimensional Metals, 1st ed., VCH, Weinheim, 1995, 31–35 |
11. |
J. M. Warman, M. P. de Haas, Rupprecht A DNA: a molecular wire?, Chem. Phys. Lett., 249 (1996), 319–322 |
12. |
Dutreix J., A. Wambersie, M. Tubiana (eds.), Introduction to radiobiology, CRC Press, London, 1990 |
13. |
K. Frenkel, “Carcinogen-mediated oxidant formation and oxidative DNA damage”, Pharmacol. Ther, 53 (1992), 127–166 |
14. |
B. N. Ames, M. K. Shigenaga, T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging”, Proc. Natl. Acad. Sci. USA, 90 (1993), 7915–7922 |
15. |
S. Loft, H. E. Poulsen, “Cancer risk and oxidative DNA damage in man”, J. Mol. Med, 74 (1996), 297–312 |
16. |
F. Gros, “Colloque “Risques cancérogénes dus aux rayonnements ionisants” 14-16 mai 1998”, Comptes Rendus De l'Academie Des Sciences. Serie III, Sciences De La Vie, 322, no. 2–3, eds. Cros F., Tubiana M., Sarasin A., Masse R., Maustacchi E., Früry-Herrard A., Rosa J., 1999, 87–88 |
17. |
P. O'Neill, E. M. Fielden, “2-Primary Free Radical Processes in DNA”, Advances in Radiation Biology, 17 (1993), 53 |
18. |
J. Retel, B. Hoebee, J. E.F. Braun, J. T. Lutgernik, E. Akker, A. Handayani Wanamarta, H. Joenje, M.V.M. Lafleur, “Mutational specificity of oxidative DNA damage”, Mutations Res, 299 (1993), 165–182 |
19. |
B. Demple, L. Harrison, “Repair of oxidative damage to DNA: enzymology and biology”, Annu. Rev. Biochem, 63 (1994), 915–948 |
20. |
N. J. Turro, J. K. Barton, Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm?, J. Biol. Inorg. Chem., 3 (1998), 201–209 |
21. |
F. D. Lewis, T. Wu, Liu X. R.L. Letsinger, S. R. Greenfield, S. E. Miller, M. R. Wasielewski, “Dynamics of Photoinduced Charge Separation and Charge Recombination in Synthetic DNA Hairpins with Stilbenedicarboxamide Linkers”, J. Am. Chem. Soc, 122:12 (2000), 2889–2902 |
22. |
C. J. Murphy, M. A. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix”, Science, 262 (1993), 1025–1029 |
23. |
D. B. Hall, R. E. Holmlin, J. K. Barton, “Oxidative DNA damage through long-range electron transfer”, Nature, 382 (1996), 731–735 |
24. |
S. O. Kelley, N. M. Jackson, M. G. Hall, J. K. Barton, “Long Range Electron Transfer through DNA Films”, Angew. Chem. Int. Ed, 38 (1999), 941–945 |
25. |
A. M. Brun, A. J. Harriman, “Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases”, J. Am. Chem. Soc, 114 (1992), 3656–3660 |
26. |
T. J. Mead, J. F. Kayem, “Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors”, Angew. Chem. Int. Ed. Engl, 34 (1995), 352–354 |
27. |
A. Draganescu, T. D. Tullius, “Targeting of nucleic acids by iron complexes”, Metal Ions in Biological Systems, 33 (1996), 453–484 |
28. |
A. M. Brun, A. Harriman, “Energy- and electron-transfer processes involving paladium phorphyrins bound to DNA”, J. Am. Chem. Soc, 116 (1994), 10383–10393 |
29. |
A. Harriman, “Electron Tunneling in DNA”, Angew. Chem. Int. Ed, 38 (1999), 945–949 |
30. |
P. Lincoln, E. Tuite, B. Norden, “Short-Circuiting the Molecular Wire: Cooperative Binding of $\Delta$-[Ru(phen)2dppz]2+ and $\Delta$-[Rh(phi)2bipy]3+ to DNA”, J. Am. Chem. Soc, 119 (1997), 1454–1455 |
31. |
E. J.C. Olson, D. Hu, A. Hörmann, P. F. Barlbara, “Quantitative Modeling of DNAMediated Electron Transfer between Metallointercalators”, J. Phys. Chem. B, 101 (1997), 299–303 |
32. |
F. D. Lewis, R. L. Letsinger, “Distance-dependent photoinduced electron transfer in synthetic single-strand and hairpin DNA”, J. Biol. Inorg. Chem, 3 (1998), 215–221 |
33. |
E. S. Krider, T. J. Mead, “Electron transfer in DNA: covalent attachment of spectroscopically unique donor and acceptor complexes”, J. Biol. Inorg. Chem, 3 (1998), 222–225 |
34. |
E. M. Boon, J. K. Barton, “Charge transport in DNA”, Curr. Opin. Stuct. Biol., 12 (2002), 320–329 |
35. |
P. T. Henderson, D. Jonnes, G. Hampikin, Y. Kan, G. B. Schuster, “Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism”, Proc. Nat. Acad. Sci. USA, 96 (1999), 8353–8358 |
36. |
F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfeld, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins”, Science, 277 (1997), 673–676 |
37. |
E. Meggers, M. E. Michel-Beyerle, B. Giese, “Sequence Dependent Long Range Hole Transport in DNA”, J. Am. Chem. Soc, 120 (1998), 12950–12955 |
38. |
B. Giese, S. Wessely, M. Spormann, U. Lindeman, E. Meggers, M. E. Michel-Begerle, “On the Mechanism of Long Range Electron Transfer through DNA”, Angew. Chem. Int. Ed, 38 (1999), 996–998 |
39. |
M. Bixon, B. Giese, S. Wessly, Langenbacher. T., M. E. Michel-Beyerle, J. Jortner, “Longrange charge hopping in DNA”, PNAS, 96 (1999), 11713–11716 |
40. |
B. Giese, J. Amaudrut, A. K. K-hler, M. Spormann, S. Wessely, “Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling”, Nature, 412 (2001), 318–320 |
41. |
B. Giese, “Long-distance charge transport in DNA: the hopping mechanism”, Acc. Chem. Res, 33 (2000), 631–636 |
42. |
D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 |
43. |
H. W. Fink, C. Schönenberger, “Electrical conduction through DNA molecules”, Nature, 398 (1999), 407–410 |
44. |
A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-induced superconductivity in DNA”, Science, 291 (2001), 280–282 |
45. |
H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, M. Shimizu, “Single molecule DNA device measured with triple-probe atomic force microscope”, Appl. Phys. Lett, 79 (2001), 2462–2464 |
46. |
T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, “Transport properties of carrier-injected DNA”, J. Chem. Phys, 118 (2003), 4245–4252 |
47. |
A. J. Storm, J. van Noort, S. de Vries, C. Dekker, “Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale”, Appl. Phys. Lett, 79 (2001), 3881–3883 |
48. |
I. Cai, H. Tabata, T. Kawai, “Self-assembled DNA networks and their electrical conductivity”, Appl. Phys. Lett, 77 (2000), 3105–3106 |
49. |
H. Y. Lee, H. Tanaka, Y. Otsuka, K. H. Yoo, J. Lee, T. Kawai, “Control of electrical conduction in DNA using oxygen hole doping”, Appl. Phys. Lett, 80 (2002), 1670 |
50. |
H. Tabata, L. T. Cai, J. H. Gu, S. Tanaka, Y. Otsuka, Y. Sacho, M. Taniguchi, T. Kawai, “Toward the DNA electronics”, Sinth. Met., 133:7 (2003), 469–472 |
51. |
A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu, “Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks”, Phys. Rev. Lett, 86 (2001), 3670–3673 |
52. |
P. Aich, S. L. Labiuk, L. W. Tari, L. J.T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, J. S. Lee, “M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire”, J. Mol. Biol, 294 (1999), 477–485 |
53. |
S. D. Wetting, D. O. Wood, J. S. Lee, “Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex”, Journal of Inorganic Biochemistry, 94 (2003), 94–99 |
54. |
C. Z. Li, Y. T. Long, H. B. Kraatz, J. S. Lee, “Electrochemical Investigations of M-DNA SelfAssembled Monolayers on Gold Electrodes”, J. Phys. Chem. B, 107 (2003), 2291–2296 |
55. |
K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, Han Yong Choi, “Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules”, Phys. Rev. Lett, 87 (2001), 198102 |
56. |
Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, “Anisotropic Electric Conductivity in an Aligned DNA Cast Film”, J. Am. Chem. Soc, 120 (1998), 6165–6166 |
57. |
E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature, 391 (1998), 775–778 |
58. |
Q. Gu, C. Cheng, R. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai, D. T. Haynie, “DNA nanowire fabrication”, Nanotechnology, 17 (2006), R14–R25 |
59. |
J. S. Lee, J. P. Latimer, R. S. Reid, “A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions”, Biochem. Cell. Biol, 71 (1993), 162–168 |
60. |
S. W. Lee, C. Mao, C. E. Flynn, A. M. Belcher, “Ordering of quantum dots using genetically engineered viruses”, Science, 296 (2002), 892–895 |
61. |
C. E. Flynn, S. W. Lee, B. R. Peelle, A. M. Belcher, “Viruses as vehicles for growth, organization and assembly of materials”, Acta Materialia, 51 (2003), 5867–5880 |
62. |
P. J. Yoo, K. T. Nam, J. Qi, S. K. Lee, J. Park, A. M. Belcher, P. T. Hammond, “Spontaneous assembly of viruses on multilayered polymer surfaces”, Nature Materials, 5 (2006), 234–240 |
63. |
K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, “Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes”, Science, 316 (2006), 885–888 |
64. |
Dr. Wan-Li Xing, Dr. Jing Cheng (eds.), Frontiers in Biochip Technology, Springer, 2006, 358 pp. |
65. |
Ю. П. Лысов, В. Л. Флорентьев, А. А. Хорлин, К. Р. Храпко, В. В. Шик, А. Д. Мирзабеков, “Определение нуклеолтидной последовательности ДНК гибридизацией с олигонуклеотидами”, Новый метод. ДАН СССР, 303 (1988), 1508–1511 |
66. |
Jang B. Rampal (ed.), Microarrays, v. I, Methods in Molecular Biology, 381, Synthesis Methods, Humana Press, 2007, 452 pp. |
67. |
G. Marchand, C. Delattre, R. Campagnolo, P. Pouteau, F. Ginot, “Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets”, Analytical Chem, 77 (2005), 5189–5195 |
68. |
J. J. Gooding, “Electrochemical DNA hybridization biosensors”, Electroanalysis, 14 (2002), 1149–1156 |
69. |
E. Palecek, F. Jelen, “Electrochemistry of Nucleic Acids and Development of DNA Sensors”, Crit. Rev. Anal. Chem, 3 (2002), 261–270 |
70. |
J. Wang, “Electrochemical nucleic acid biosensors”, Anal. Chim. Acta, 469 (2002), 63–71 |
71. |
T. G. Drummond, M. G. Hill, J. K. Barton, “Electrochemical DNA sensors”, Nature Biotechnology, 21 (2003), 1192–1199 |
72. |
J. Hahm, C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors”, Nano Letters, 4:1 (2004), 51–54 |
73. |
N. D. Popovich, H. H. Thorp, “New strategies for electrochemical nucleic acid detection”, Interface, 11 (2002), 30–34 |
74. |
L. M. Demers, D. S. Clinger, S.-J. Park, Z. Li, S. W. Chung, C. A. Mirkin, “Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography”, Science, 296 (2002), 1836–1838 |
75. |
D. S. Ginger, H. Zhang, C. A. Mirkin, “The evolution of dip-pen nanolithography”, Angewandte Chem, 43 (2004), 30–45 |
76. |
N. C. Seeman, “An overview of structural DNA nanotechnology”, Mol. Biotech, 37 (2007), 246–257 |
77. |
N. C. Seeman, “From genes to machines: DNA nanomechanical devices”, Trends Biochem. Sci, 30 (2005), 119–125 |
78. |
N. C. Seeman, P. S. Lukeman, “Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale”, Rep. Progr. Phys, 68 (2005), 237–270 |
79. |
V. D. Lakhno, V. B. Sultanov, “On the Possibility of Electronic DNA Nanobiochips”, JCTC, 3 (2007), 703–705 |
80. |
Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath, “Two-dimensional molecular electronics circuits”, Chem. Phys. Chem, 3 (2002), 519–525 |
81. |
J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, “A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter”, Nature, 445 (2007), 414–417 |
82. |
R. J. Tseng, C. Tsai, L. Ma, J. Onyang, C. S. Ozkan, Y. Yang, “Digital memory device based on tobacco mosaic virus conjugated with nanoparticles”, Nature Nanotechnology, 1 (2006), 72–77 |
83. |
A. Aviram, M. A. Ratner, “Molecular Rectifiers”, Chem. Phys. Lett, 29 (1974), 277–283 |
84. |
C. P. Callier, E. W. Wong, M. Belobradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath, “Electronically configurable molecular-based logic gates”, Science, 285 (1999), 391–394 |
85. |
C. Zhou, M. R. Deshpande, M. A. Reed, “Nanoscale metal/self-assembled monolayer/metal heterostructures”, Appl. Phys. Lett, 71 (1997), 611–613 |
86. |
D. Porath, G. Cuniberty, R. D. Felice, “Charge Transport in DNA-Based Devices”, Top. Curr. Chem, 237 (2004), 183–227 |
87. |
V. D. Lakhno, V. B. Sultanov, “Electronic XOR logic gate based on DNA”, Math. Biol. Bioinf, 1 (2006), 123 |
88. |
Y. Otsuka, H. Y. Lee, J. H. Gu, J. O. Lee, K. H. Yoo, H. Tanaka, H. Tabata, T. Kawai, “Influence of Humidity on the Electrical Conductivity of Synthesized DNA Film on Nanogap Electrode”, Jpn. J. Appl. Phys, 41 (2002), 891–894 |
89. |
J. H. Gu, L. Cai, S. Tanaka, Y. Otsuka, H. Tabata, T. Kawai, “Electric conductivity of dye modified DNA films with and without light irradiation in various humidities”, J. Appl. Phys, 92 (2002), 2816–2820 |
90. |
M. Taniguchi, H. Y. Lee, H. Tanaka, T. Kawai, “Electrical Properties of Poly(dA)$\cdot$Poly(dT) and Poly(dG)$\cdot$Poly(dC) DNA Doped with Iodine Molecules”, Jpn. J. Appl. Phys., 42 (2003), L215–L216 |
91. |
D. J. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Optiteck, J. C. Ellenbogen, “Overview of nanoelectronic devices”, Proc. IEEE, 85:4 (1997), 521–540 |
92. |
C. C. Lent, P. D. Tongaw, “A device architecture for computing with quantum dots”, Proc. IEEE, 85 (1997), 542–557 |