RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическая биология и биоинформатика

Матем. биология и биоинформ., 2021, том 16, выпуск 1, страницы 115–135 (Mi mbb461)

Молекулярные устройства на основе ДНК
В. Д. Лахно, А. В. Винников

СПИСОК ЛИТЕРАТУРЫ

1. A. Dragon, “Polymerase chain reaction”, Sci. Am., 278:5 (1998), 112  crossref  adsnasa
2. E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, “Design and self-assembly of twodimensional DNA crystals”, Nature, 394:6693 (1998), 539–544  crossref  adsnasa  scopus
3. N. C. Seeman, “Nanotechnology and helix the double”, Sci. Am., 290:6 (2004)  crossref  scopus
4. M. D. Wang, H. Yin, R. Landick, J. Gelles, SM. Block, “Stretching DNA with optical tweezers”, Biophyz. J., 72:3 (1997), 1335–1346  crossref
5. C. Bustamante, D. J. Keller, “Scanning Force Microscopy”, Biology Physics Today, 48 (1995), 32  crossref
6. T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, V. Croguette, “The elasticity of a single supercoiled DNA molecule”, Science, 271:5257 (1996), 1835–1837  crossref  adsnasa
7. U. Bockelmanan, B. Essevaz-Roulet, F. Heslot, “DNA strand separation studied by single molecule force measurements”, Phys. Rev. E, 58 (1998), 2386  crossref  adsnasa
8. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature, 391 (1998), 775–778  crossref  adsnasa
9. D. D. Eley, D. I. Spivey, “Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state”, Trans. Faraday Soc., 58 (1962), 411–415  crossref
10. S. R. Roth, One-Dimensional Metals, 1st ed., VCH, Weinheim, 1995, 31–35
11. J. M. Warman, M. P. de Haas, Rupprecht A DNA: a molecular wire?, Chem. Phys. Lett., 249 (1996), 319–322  crossref  adsnasa
12. Dutreix J., A. Wambersie, M. Tubiana (eds.), Introduction to radiobiology, CRC Press, London, 1990
13. K. Frenkel, “Carcinogen-mediated oxidant formation and oxidative DNA damage”, Pharmacol. Ther, 53 (1992), 127–166  crossref
14. B. N. Ames, M. K. Shigenaga, T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging”, Proc. Natl. Acad. Sci. USA, 90 (1993), 7915–7922  crossref  adsnasa
15. S. Loft, H. E. Poulsen, “Cancer risk and oxidative DNA damage in man”, J. Mol. Med, 74 (1996), 297–312  crossref
16. F. Gros, “Colloque “Risques cancérogénes dus aux rayonnements ionisants” 14-16 mai 1998”, Comptes Rendus De l'Academie Des Sciences. Serie III, Sciences De La Vie, 322, no. 2–3, eds. Cros F., Tubiana M., Sarasin A., Masse R., Maustacchi E., Früry-Herrard A., Rosa J., 1999, 87–88  crossref  scopus
17. P. O'Neill, E. M. Fielden, “2-Primary Free Radical Processes in DNA”, Advances in Radiation Biology, 17 (1993), 53  crossref
18. J. Retel, B. Hoebee, J. E.F. Braun, J. T. Lutgernik, E. Akker, A. Handayani Wanamarta, H. Joenje, M.V.M. Lafleur, “Mutational specificity of oxidative DNA damage”, Mutations Res, 299 (1993), 165–182  crossref  scopus
19. B. Demple, L. Harrison, “Repair of oxidative damage to DNA: enzymology and biology”, Annu. Rev. Biochem, 63 (1994), 915–948  crossref
20. N. J. Turro, J. K. Barton, Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm?, J. Biol. Inorg. Chem., 3 (1998), 201–209  crossref
21. F. D. Lewis, T. Wu, Liu X. R.L. Letsinger, S. R. Greenfield, S. E. Miller, M. R. Wasielewski, “Dynamics of Photoinduced Charge Separation and Charge Recombination in Synthetic DNA Hairpins with Stilbenedicarboxamide Linkers”, J. Am. Chem. Soc, 122:12 (2000), 2889–2902  crossref  scopus
22. C. J. Murphy, M. A. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix”, Science, 262 (1993), 1025–1029  crossref  adsnasa  scopus
23. D. B. Hall, R. E. Holmlin, J. K. Barton, “Oxidative DNA damage through long-range electron transfer”, Nature, 382 (1996), 731–735  crossref  adsnasa
24. S. O. Kelley, N. M. Jackson, M. G. Hall, J. K. Barton, “Long Range Electron Transfer through DNA Films”, Angew. Chem. Int. Ed, 38 (1999), 941–945  crossref
25. A. M. Brun, A. J. Harriman, “Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases”, J. Am. Chem. Soc, 114 (1992), 3656–3660  crossref
26. T. J. Mead, J. F. Kayem, “Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors”, Angew. Chem. Int. Ed. Engl, 34 (1995), 352–354  crossref  scopus
27. A. Draganescu, T. D. Tullius, “Targeting of nucleic acids by iron complexes”, Metal Ions in Biological Systems, 33 (1996), 453–484
28. A. M. Brun, A. Harriman, “Energy- and electron-transfer processes involving paladium phorphyrins bound to DNA”, J. Am. Chem. Soc, 116 (1994), 10383–10393  crossref
29. A. Harriman, “Electron Tunneling in DNA”, Angew. Chem. Int. Ed, 38 (1999), 945–949  crossref
30. P. Lincoln, E. Tuite, B. Norden, “Short-Circuiting the Molecular Wire: Cooperative Binding of $\Delta$-[Ru(phen)2dppz]2+ and $\Delta$-[Rh(phi)2bipy]3+ to DNA”, J. Am. Chem. Soc, 119 (1997), 1454–1455  crossref
31. E. J.C. Olson, D. Hu, A. Hörmann, P. F. Barlbara, “Quantitative Modeling of DNAMediated Electron Transfer between Metallointercalators”, J. Phys. Chem. B, 101 (1997), 299–303  crossref
32. F. D. Lewis, R. L. Letsinger, “Distance-dependent photoinduced electron transfer in synthetic single-strand and hairpin DNA”, J. Biol. Inorg. Chem, 3 (1998), 215–221  crossref
33. E. S. Krider, T. J. Mead, “Electron transfer in DNA: covalent attachment of spectroscopically unique donor and acceptor complexes”, J. Biol. Inorg. Chem, 3 (1998), 222–225  crossref
34. E. M. Boon, J. K. Barton, “Charge transport in DNA”, Curr. Opin. Stuct. Biol., 12 (2002), 320–329  crossref
35. P. T. Henderson, D. Jonnes, G. Hampikin, Y. Kan, G. B. Schuster, “Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism”, Proc. Nat. Acad. Sci. USA, 96 (1999), 8353–8358  crossref  adsnasa
36. F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfeld, M. R. Wasielewski, “Distance-dependent electron transfer in DNA hairpins”, Science, 277 (1997), 673–676  crossref
37. E. Meggers, M. E. Michel-Beyerle, B. Giese, “Sequence Dependent Long Range Hole Transport in DNA”, J. Am. Chem. Soc, 120 (1998), 12950–12955  crossref
38. B. Giese, S. Wessely, M. Spormann, U. Lindeman, E. Meggers, M. E. Michel-Begerle, “On the Mechanism of Long Range Electron Transfer through DNA”, Angew. Chem. Int. Ed, 38 (1999), 996–998  crossref
39. M. Bixon, B. Giese, S. Wessly, Langenbacher. T., M. E. Michel-Beyerle, J. Jortner, “Longrange charge hopping in DNA”, PNAS, 96 (1999), 11713–11716  crossref  adsnasa
40. B. Giese, J. Amaudrut, A. K. K-hler, M. Spormann, S. Wessely, “Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling”, Nature, 412 (2001), 318–320  crossref  adsnasa
41. B. Giese, “Long-distance charge transport in DNA: the hopping mechanism”, Acc. Chem. Res, 33 (2000), 631–636  crossref
42. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638  crossref  adsnasa
43. H. W. Fink, C. Schönenberger, “Electrical conduction through DNA molecules”, Nature, 398 (1999), 407–410  crossref  adsnasa
44. A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-induced superconductivity in DNA”, Science, 291 (2001), 280–282  crossref  adsnasa  scopus
45. H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, M. Shimizu, “Single molecule DNA device measured with triple-probe atomic force microscope”, Appl. Phys. Lett, 79 (2001), 2462–2464  crossref  adsnasa
46. T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, “Transport properties of carrier-injected DNA”, J. Chem. Phys, 118 (2003), 4245–4252  crossref  adsnasa
47. A. J. Storm, J. van Noort, S. de Vries, C. Dekker, “Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale”, Appl. Phys. Lett, 79 (2001), 3881–3883  crossref  adsnasa
48. I. Cai, H. Tabata, T. Kawai, “Self-assembled DNA networks and their electrical conductivity”, Appl. Phys. Lett, 77 (2000), 3105–3106  crossref  adsnasa
49. H. Y. Lee, H. Tanaka, Y. Otsuka, K. H. Yoo, J. Lee, T. Kawai, “Control of electrical conduction in DNA using oxygen hole doping”, Appl. Phys. Lett, 80 (2002), 1670  crossref  adsnasa
50. H. Tabata, L. T. Cai, J. H. Gu, S. Tanaka, Y. Otsuka, Y. Sacho, M. Taniguchi, T. Kawai, “Toward the DNA electronics”, Sinth. Met., 133:7 (2003), 469–472  crossref
51. A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu, “Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks”, Phys. Rev. Lett, 86 (2001), 3670–3673  crossref  adsnasa
52. P. Aich, S. L. Labiuk, L. W. Tari, L. J.T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, J. S. Lee, “M-DNA: A complex between divalent metal ions and DNA which behaves as a molecular wire”, J. Mol. Biol, 294 (1999), 477–485  crossref  scopus
53. S. D. Wetting, D. O. Wood, J. S. Lee, “Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex”, Journal of Inorganic Biochemistry, 94 (2003), 94–99  crossref
54. C. Z. Li, Y. T. Long, H. B. Kraatz, J. S. Lee, “Electrochemical Investigations of M-DNA SelfAssembled Monolayers on Gold Electrodes”, J. Phys. Chem. B, 107 (2003), 2291–2296  crossref
55. K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, Han Yong Choi, “Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules”, Phys. Rev. Lett, 87 (2001), 198102  crossref  adsnasa  scopus
56. Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, “Anisotropic Electric Conductivity in an Aligned DNA Cast Film”, J. Am. Chem. Soc, 120 (1998), 6165–6166  crossref
57. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature, 391 (1998), 775–778  crossref  adsnasa
58. Q. Gu, C. Cheng, R. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai, D. T. Haynie, “DNA nanowire fabrication”, Nanotechnology, 17 (2006), R14–R25  crossref
59. J. S. Lee, J. P. Latimer, R. S. Reid, “A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions”, Biochem. Cell. Biol, 71 (1993), 162–168  crossref
60. S. W. Lee, C. Mao, C. E. Flynn, A. M. Belcher, “Ordering of quantum dots using genetically engineered viruses”, Science, 296 (2002), 892–895  crossref  adsnasa
61. C. E. Flynn, S. W. Lee, B. R. Peelle, A. M. Belcher, “Viruses as vehicles for growth, organization and assembly of materials”, Acta Materialia, 51 (2003), 5867–5880  crossref  adsnasa  scopus
62. P. J. Yoo, K. T. Nam, J. Qi, S. K. Lee, J. Park, A. M. Belcher, P. T. Hammond, “Spontaneous assembly of viruses on multilayered polymer surfaces”, Nature Materials, 5 (2006), 234–240  crossref  adsnasa
63. K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, “Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes”, Science, 316 (2006), 885–888  crossref  adsnasa  scopus
64. Dr. Wan-Li Xing, Dr. Jing Cheng (eds.), Frontiers in Biochip Technology, Springer, 2006, 358 pp.
65. Ю. П. Лысов, В. Л. Флорентьев, А. А. Хорлин, К. Р. Храпко, В. В. Шик, А. Д. Мирзабеков, “Определение нуклеолтидной последовательности ДНК гибридизацией с олигонуклеотидами”, Новый метод. ДАН СССР, 303 (1988), 1508–1511
66. Jang B. Rampal (ed.), Microarrays, v. I, Methods in Molecular Biology, 381, Synthesis Methods, Humana Press, 2007, 452 pp.
67. G. Marchand, C. Delattre, R. Campagnolo, P. Pouteau, F. Ginot, “Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets”, Analytical Chem, 77 (2005), 5189–5195  crossref  elib
68. J. J. Gooding, “Electrochemical DNA hybridization biosensors”, Electroanalysis, 14 (2002), 1149–1156  crossref
69. E. Palecek, F. Jelen, “Electrochemistry of Nucleic Acids and Development of DNA Sensors”, Crit. Rev. Anal. Chem, 3 (2002), 261–270  crossref
70. J. Wang, “Electrochemical nucleic acid biosensors”, Anal. Chim. Acta, 469 (2002), 63–71  crossref
71. T. G. Drummond, M. G. Hill, J. K. Barton, “Electrochemical DNA sensors”, Nature Biotechnology, 21 (2003), 1192–1199  crossref
72. J. Hahm, C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors”, Nano Letters, 4:1 (2004), 51–54  crossref  adsnasa
73. N. D. Popovich, H. H. Thorp, “New strategies for electrochemical nucleic acid detection”, Interface, 11 (2002), 30–34
74. L. M. Demers, D. S. Clinger, S.-J. Park, Z. Li, S. W. Chung, C. A. Mirkin, “Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography”, Science, 296 (2002), 1836–1838  crossref  mathscinet  adsnasa
75. D. S. Ginger, H. Zhang, C. A. Mirkin, “The evolution of dip-pen nanolithography”, Angewandte Chem, 43 (2004), 30–45  crossref  adsnasa
76. N. C. Seeman, “An overview of structural DNA nanotechnology”, Mol. Biotech, 37 (2007), 246–257  crossref
77. N. C. Seeman, “From genes to machines: DNA nanomechanical devices”, Trends Biochem. Sci, 30 (2005), 119–125  crossref  scopus
78. N. C. Seeman, P. S. Lukeman, “Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale”, Rep. Progr. Phys, 68 (2005), 237–270  crossref  adsnasa
79. V. D. Lakhno, V. B. Sultanov, “On the Possibility of Electronic DNA Nanobiochips”, JCTC, 3 (2007), 703–705
80. Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath, “Two-dimensional molecular electronics circuits”, Chem. Phys. Chem, 3 (2002), 519–525  crossref  scopus
81. J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, “A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter”, Nature, 445 (2007), 414–417  crossref  adsnasa
82. R. J. Tseng, C. Tsai, L. Ma, J. Onyang, C. S. Ozkan, Y. Yang, “Digital memory device based on tobacco mosaic virus conjugated with nanoparticles”, Nature Nanotechnology, 1 (2006), 72–77  crossref  adsnasa
83. A. Aviram, M. A. Ratner, “Molecular Rectifiers”, Chem. Phys. Lett, 29 (1974), 277–283  crossref  adsnasa
84. C. P. Callier, E. W. Wong, M. Belobradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath, “Electronically configurable molecular-based logic gates”, Science, 285 (1999), 391–394  crossref  scopus
85. C. Zhou, M. R. Deshpande, M. A. Reed, “Nanoscale metal/self-assembled monolayer/metal heterostructures”, Appl. Phys. Lett, 71 (1997), 611–613  crossref  adsnasa  scopus
86. D. Porath, G. Cuniberty, R. D. Felice, “Charge Transport in DNA-Based Devices”, Top. Curr. Chem, 237 (2004), 183–227  crossref
87. V. D. Lakhno, V. B. Sultanov, “Electronic XOR logic gate based on DNA”, Math. Biol. Bioinf, 1 (2006), 123  mathnet  crossref
88. Y. Otsuka, H. Y. Lee, J. H. Gu, J. O. Lee, K. H. Yoo, H. Tanaka, H. Tabata, T. Kawai, “Influence of Humidity on the Electrical Conductivity of Synthesized DNA Film on Nanogap Electrode”, Jpn. J. Appl. Phys, 41 (2002), 891–894  crossref  adsnasa
89. J. H. Gu, L. Cai, S. Tanaka, Y. Otsuka, H. Tabata, T. Kawai, “Electric conductivity of dye modified DNA films with and without light irradiation in various humidities”, J. Appl. Phys, 92 (2002), 2816–2820  crossref  adsnasa  scopus
90. M. Taniguchi, H. Y. Lee, H. Tanaka, T. Kawai, “Electrical Properties of Poly(dA)$\cdot$Poly(dT) and Poly(dG)$\cdot$Poly(dC) DNA Doped with Iodine Molecules”, Jpn. J. Appl. Phys., 42 (2003), L215–L216  crossref  adsnasa
91. D. J. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Optiteck, J. C. Ellenbogen, “Overview of nanoelectronic devices”, Proc. IEEE, 85:4 (1997), 521–540  crossref
92. C. C. Lent, P. D. Tongaw, “A device architecture for computing with quantum dots”, Proc. IEEE, 85 (1997), 542–557  crossref


© МИАН, 2025