RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie

Mat. Model., 2004, Volume 16, Number 9, Pages 49–60 (Mi mm243)

Modelling of kinetics of atomic ensemble in a light field using the langevin equation
A. V. Bezverbny, A. V. Shapovalov

References

1. J. Opt. Soc. Am. B, 6:11 (1989)
2. G. Grynberg, C. Robilliard, “Cold atoms in dissipative optical lattices”, Phys. Reports, 355 (2001), 335–451  crossref  adsnasa
3. Y. Gastin, K. Berg-Sørensen, J. Dalibard, K. Mølmer, “Two-dimensional Sisyphus cooling”, Phys. Rev. A, 50:6 (1994), 5092–5115  crossref  adsnasa
4. J. Dalibard, Y. Gastin, K. Mølmer, “Wave-function approach to dissipative processes in quantum optics”, Phys. Rev. Lett., 68:5 (1992), 580–583  crossref  adsnasa
5. J. Dalibard, C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models”, J. Opt. Soc. Am. B, 6:11 (1989), 2023–2045  crossref  adsnasa
6. J. Javanainen, “Density-matrix equations and photon recoil for multistate atoms”, Phys. Rev. A, 44:9 (1991), 5857–5880  crossref  adsnasa
7. J. Javanainen, “Numerical experiments in semiclassical laser-cooling theory of multistate atoms”, Phys. Rev. A, 46:9 (1992), 5819–5835  crossref  adsnasa
8. K. I. Petsas, G. Grynberg, J.-Y. Courtois, “Semiclassical Monte Carlo approaches for realistic atoms in optical lattices”, Eur. Phys. J. D, 6 (1999), 29–47  crossref  adsnasa
9. L. V. Bezverbnyi, O. N. Prudnikov, L. V. Taichenachev i dr., “Sila svetovogo davleniya, koeffitsienty treniya i diffuzii dlya atomov v rezonansnom neodnorodno polyarizovannom pole”, Zhurn. eksp. i teor. fiz., 123:3 (2003), 437–456
10. A. V. Bezverbnyi, “Vliyanie struktury polevykh invariantov na kinetiku formirovaniya dvumernykh dissipativnykh atomarnykh reshetok”, Izv. vuzov. Fizika, 2003, no. 5, 7–14
11. A. V. Bezverbnyi, “Prostranstvennaya struktura invariantov v konfiguratsiyakh monokhromaticheskogo polya razmernosti $D>1$”, Zhurn. eksp. i teor. fiz., 124:11 (2003), 981–995
12. C. Savage, Introduction to light forces, atom cooling, and atom trapping, atom-ph/9510004, 1995, 15 pp.
13. L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 512 pp.  mathscinet
14. I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. Teoriya neravnovesnykh sistem, Izd-vo MGU, M., 1987, 559 pp.  mathscinet
15. J. Qiang, S. Habib, A second-order stochastic leap-frog algorithm for Langevin simulation, physics/0008196, 2000, 3 pp.
16. H. A. Forbert, S. A. Chin, Fourth order algorithms for solving the multivariable Langevin equation and the Kramers equation, niucl-th/0006087, 2000, 19 pp.
17. H. Nakajima, S. Furui, A new algorithm for numerical simulation of Langevin equations, 1996, 4 pp.
18. G. N. Milshtein, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo Ural. un-ta, Sverdlovsk, 1988, 224 pp.  mathscinet
19. R. F. Fox, I. R. Gatland, R. Roy, G. Vemuri, “Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise”, Phys. Rev. A, 38 (1988), 5938–5940  crossref  adsnasa
20. F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp.  mathscinet


© Steklov Math. Inst. of RAS, 2025