|
|
|
References
|
|
|
1. |
Iu. N. Novikov, S. V. Gazhula, “Osobennosti otsenki mestorozhdenij uglevodorodnogo syria arkticheskogo shelfa Rossii i ikh pereotsenki v sootvetstvii s novoj klassifikatsiej zapasov”, Neftegazovaia geologiia. Teoriia i praktika, 2008, no. 3, 1–19 |
2. |
S. G. Lee, S. H. Lun, G. Y. Kong, “Modeling and simulation system for marine accident cause investigation”, Collision and Graunding of Ships and Offsore Structure, eds. Amdahl, Ehlers, Leira, Taylor and France Group, London, 2013, 39–47 |
3. |
A. T. Bekker, O. A. Sabobash, V. I. Seliverstov, G. I. Koff, E. N. Pipko, “Estimation of Limit Ice Loads on Engeneering Offshore Structures in the See of Okhotsk”, Proceeding of the Nineteenth International Offshore and Polar Engeneering Conference (2009), 574–579 |
4. |
R. V. Goldshtejn, N. M. Osipenko, “Treshhinostojkost i razrusheniia ledianogo pokrova ledokolami”, Trudy AANII, 391, 1986, 137–156 |
5. |
R. V. Goldshtejn, N. M. Osipenko, “Voprosy mehaniki razrusheniia lda i ledianogo pokrova pri analize ledianyh nagruzok”, Vesti gazovoj nauki. Sovremennye podkhody i perspektivnye tehnologii v proektakh osvoeniia neftegazovykh mestorozhdenij rossijskogo shelfa, 3(4), Gazprom, VNNIGAZ, M., 2013, 104–112 |
6. |
D. G. Levchenko, A. V. Zakirov, V. D. Levchenko, “Dynamic modeling of the propagation of low-frequency seismic acoustic fields in the oceanic medium”, Doklady Earth Sciences, 435:2 (2010), 1623–1626 |
7. |
V. A. Mirjakha, A. V. Sannikov, I. B. Petrov, “Discontinuous Galerkin Method for Numerical Simulation of Dynamic Processes in Solids”, Mathematical Models and Computer Simulations, 7:5 (2015), 446–455 |
8. |
M. S. Zhdanov, Geohpysical Inverse Theory and Regularization Problems, Elseiver, 2002, 609 pp. |
9. |
V. Novatskij, Teoriia uprugosti, Mir, M., 1975, 872 pp. |
10. |
I. B. Petrov, A. V. Favorskaya, A. V. Sannikov, I. E. Kvasov, “Grid-characteristic method using highorder interpolation on tetrahedral hierarchical meshes with a multiple time step”, Mathematical Models and Computer Simulations, 5:5 (2013), 409–415 |
11. |
L. D. Landau, E. M. Lifshitz, A Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon Press, 1959 |
12. |
V. Novatskij, Volnovye zadachi teorii plastichnosti, Mir, M., 1978, 307 pp. |
13. |
V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method”, Computational Mathematics and Mathematical Physics, 53:10 (2013), 1523–1533 |
14. |
A. Harten, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 135:2 (1997), 260–278 |
15. |
I. B. Petrov, N. I. Khokhlov, “Sravnenie TVD limiterov dlia chislennogo resheniia uravnenij dinamiki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniia, Sbornik nauchnyh trudov, 2011, 104–111 |
16. |
P. L. Roe, “Characteristic-Based Schemes for the Euler Equations”, Annual Review of Fluid Mechanics, 18 (1986), 337–365 |
17. |
V. I. Golubev, “Metodika otobrazheniia i interpretatsii rezultatov polnovolnovykh sejsmicheskikh raschetov”, Trudy MFTI, 6:1 (2014), 54–161 |