RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie

Mat. Model., 2020, Volume 32, Number 3, Pages 3–18 (Mi mm4160)

Hermite characteristic scheme for linear inhomogeneous transport equation
E. N. Aristova, G. I. Ovcharov

References

1. V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, MM&CS, 8:5 (2016), 577–584  mathnet  mathscinet  elib
2. A. V. Favorskaya, I. B. Petrov, “Numerical modeling of wave processes in Rocks by Grid-Characteristic method”, Mathematical models and computer simulations, 10:5 (2018), 639–647  mathnet  crossref  mathscinet  zmath  elib
3. I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic wave”, Computational Mathematics and Mathematical Physics, 57:11, November (2017), 1771–1777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  elib
4. I. B. Petrov, M. V. Muratov, “Application of the grid-characteristic method in solving direct problems of seismic exploration of fractured formations (review article)”, Mathematical models and computer simulations, 11:6 (2019)  mathnet  crossref  mathscinet
5. T. Yabe, F. Xiao, T. Utsumi, “The Constrained Interpolation Profile Method for Multiphase Analysis”, Journal of Computational Physics, 169:2, May (2001), 556–593  crossref  mathscinet  zmath  adsnasa
6. T. Yabe, T. Aoki, G. Sakaguchi et al., “The Compact CIP (Cubic-Interpolated Pseudo-Particle) Method as a General Hyperbolic Solver”, Computers & Fluids, 19:3/4 (1991), 421–431  crossref  mathscinet  zmath
7. T. L. Tsai, S. W. Chiang, J. G. Yang, “Characteristics Method with Cubic-Spline Interpolation for Open Channel Flow Computation”, Intern. J. for Numerical Methods in Fluids, 46 (2004), 663–683  crossref  zmath  adsnasa
8. P. Colella P. R. Woodward, “Piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201  crossref  mathscinet  zmath  adsnasa
9. B. V. Rogov, M. N. Mikhailovskaya, “Fourth Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150  crossref  mathscinet  zmath  elib  elib
10. E. N. Aristova, B. V. Rogov, “Bicompact scheme for the multidimensional stationary linear transport equation”, Applied Numerical Mathematics, 93, July (2015), 3–14  crossref  mathscinet  zmath  elib
11. B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Applied Numerical Mathematics, 139 (2019), 136–155  crossref  mathscinet  zmath  scopus
12. A. V. Chikitkin, B. V. Rogov, “Family of central bicompact schemes with spectral resolution property for hyperbolic equations”, Applied Numerical Mathematics, 142 (2019), 151–170  crossref  mathscinet  zmath  scopus


© Steklov Math. Inst. of RAS, 2025