|
|
|
Список литературы
|
|
|
1. |
M. J. Olanrewaju, B. Huang, A. Afacan, “Online composition estimation and experiment validation of distillation processes with switching dynamics”, Chemical engineering science, 65:5 (2010), 1597–1608 |
2. |
T. Chatterjee, D. N. Saraf, “On-line estimation of product properties for crude distillation units”, Journal of Process Control, 14 (2004), 61–77 |
3. |
M. Kuhn, K. Johnson, Applied predictive modeling, Springer, New York, 2013, 600 pp. |
4. |
G. B. Digo, N. B. Digo, A. V. Kozlov, S. A. Samotylova, A. Yu. Torgashov, “Structural and parametric identification of soft sensors models for process plants based on robust regression and information criteria”, Automation and remote control, 78:4 (2017), 724–731 |
5. |
E. Walter, L. Pronzato, “On the identifiability and distinguishability of nonlinear parametric models”, Mathematics and Computers in Simulation, 42 (1996), 125–134 |
6. |
C. Cobelli, J. J. Distefano, “Parameter and structural identifiability concepts and ambiquities: a critical review and analysis”, American Physiological Society, 239:1 (1980), 7–24 |
7. |
M. J. Chappell, K. R. Godfrey, “Structural identifiability of the parameters of a nonlinear batch reactor model”, Mathematical Biosciences, 108 (1992), 241–251 |
8. |
R. Bellman, K. J. Astrom, “On structural identifiability”, Mathematical Biosciences, 7:3/4 (1970), 329–339 |
9. |
N. Meshkat, “Identifiable reparametrizations of linear compartment models”, Symbolic Computation, 63 (2014), 46–67 |
10. |
С. И. Кабанихин, Д. А. Воронов, А. А. Гродзь, О. И. Криворотько, “Идентифицируемость математических моделей медицинской биологии”, Вавиловский журнал генетики и селекции, 19:6 (2015), 738–744 [S. I. Kabanihin, D. A. Voronov, A. A. Grodz', O. I. Krivorot'ko, “Identificiruemost' matematicheskih modelej medicinskoj biologii”, Vavilovskij zhurnal genetiki i selekcii, 19:6 (2015), 738–744] |
11. |
M. J. Chappell, K. R. Godfrey, S. Vajda, “Global identifiability of the parameters of nonlinear systems with specified inputs: A comparison of methods”, Mathematical Biosciences, 102:1 (1990), 41–73 |
12. |
S. Vajda, H. Rabitz, E. Walter, Y. Lecourtier, “Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models”, Chemical Engineering Communications, 83 (1989), 191–219 |
13. |
A. Sedoglavic, “A probabilistic algorithm to test local algebraic observability in polynomial time”, Symbolic Computation, 33 (2002), 735–755 |
14. |
R. Brown, “Compartmental system analysis: state of the Art”, IEEE Trans-actions on Biomedical Engineering, 27:1 (1980), 1–38 |
15. |
L. Breiman, J. Friedman, “Estimating optional transformations for multiple regression and correlation”, Journal of the American Statistical Association, 80 (1985), 580–598 |
16. |
C. D. Holland, Fundamentals of multicomponent distillation, McGraw-Hill Book Company, New York, 1981, 633 pp. |
17. |
D. Wang, M. Murphy, “Estimating optimal transformations for multiple regression using the ACE algorithm”, Journal of Data Science, 2 (2004), 329–346 |
18. |
И. С. Можаровский, “Способ построения непараметрической модели на основе алгоритма АСЕ”, XXXII Международная научная конференция «Математические методы в технике и технологиях ММТТ-32», т. 9, 2019, 39–43 [I. S. Mozharovskii, “Sposob postroeniya neparametricheskoi modeli na osnove algoritma ACE”, XXXII Mezhdunarodnaya nauchnaya konferenciya «Matematicheskie metody v tekhnike i tekhnologiyah MMTT-32», v. 9, 2019, 39–43] |