RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie

Matem. Mod., 2020, Volume 32, Number 7, Pages 3–23 (Mi mm4194)

Stationary “von Karman” vortex structures in the magnetohydrodynamical flows of rotating incompressible polymeric liquid
A. M. Blokhin, R. E. Semenko

References

1. R. Ellahi, “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions”, Appl. Math. Model., 37:3 (2013), 1451–1467  crossref  mathscinet  zmath
2. Z. Khan, M. A. Khan, N. Siddiqui et al., “Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis”, PLOS One, 13:3 (2018), 1–16  mathscinet
3. T. Gul, S. Islam, R. A. Shah et al, “Unsteady MHD thin film flow of an Oldroyd-B fluid over an oscillating inclined belt”, PLOS One, 10:7 (2015), 1–18  mathscinet
4. L. Lie, L. Zhang, “Axial MHD flow of generalized Oldroyd-B fluid due to two oscillating cylinders”, Adv. mat. res., 354:1 (2012), 83–86  adsnasa
5. I. Khan, K. Fakhar, M. I. Anwar, “Hydro-magnetic Rotating Flows of an Oldroyd-B Fluid in a Porous Medium”, Sp. Top. and Rev. in Por. Med., 3:1 (2012), 89–95
6. A. M. Blokhin, R. E. Semenko, “Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel”, Bullet. of the South Ural State Univ., Ser: Math. Model., Program. and Comput. Softw., 11:4, 41–54  mathnet  mathscinet  zmath
7. Iu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuiu teoriiu tekuchikh polimernykh sistem, AltGPA, Barnaul, 2012, 122 pp.
8. T. von Karman, “Über laminare und turbulente Reibung”, ZAMM, 1:4 (1921), 233–252  zmath
9. H. Greenspan, The theory of rotating fluids, Cambr. Univ. Press, Cambridge, 1968, 327 pp.  mathscinet  zmath
10. K. Stewartson, “On the flow between two rotating coaxial discs”, Proc. Cambridge Phil. Soc., 49:2 (1953), 333–341  crossref  mathscinet  zmath  adsnasa
11. S. V. Kostrykin, A. A. Khapaev, I. G. Yakushkin, “Vortex patterns in quasi-two-dimensional flows of a viscous rotating fluid”, J. Exp. Theor. Phys., 112:2 (2011), 344–354  adsnasa  elib  elib
12. S. V. Kostrykin, “Steady flow regimes in the problem of intense wind-driven circulation in a thin layer of viscous rotating fluid”, J. Exp. Theor. Phys., 127:1 (2018), 167–177  adsnasa
13. A. B. Vatazhin, G. A. Liubimov, S. A. Regiger, Magnitogidrodinamicheskie techeniia v kanalakh, Nauka, M., 1970, 674 pp.
14. C. Nordling, J. Osterman, Physics handbook for science and engineering, Prof. Publ. House, 2006, 503 pp.
15. S. G. Kalashnikov, Elektrichestvo, Fizmatlit, M., 2003, 624 pp.
16. R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids, Wiley, York, 1987, 649 pp.  mathscinet
17. M. Doi, S. Edwards, The theory of polymer dynamics, Clarendon press, Oxford, 1986, 391 pp.
18. N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comp. Math. and Math. Phys., 54:5 (2014), 874–899  mathnet  mathscinet  zmath
19. A. M. Blokhin, A. S. Rudometova, “Stationary flows of a weakly conducting in-compressible polymeric liquid between coaxial cylinders”, J. of Appl. and Industr. Math., 11:4 (2017), 486–493  mathnet  crossref  mathscinet  zmath
20. A. M. Blokhin, R. E. Semenko, “Vortex motion of an incompressible polymer liquid in the cylindrical near-axial zone”, Fluid dyn., 53:2 (2018), 177–188  mathscinet  zmath
21. L.I. Sedov, A course in continuum mechanics, v. 1, Wolters-Noordhoff Publ., Groningen, 1972, 309 pp.
22. L. G. Loitsianskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978, 677 pp.
23. Shih-i Pai, Introduction to the theory of compressible flow, D. Van Nostrand Co., Princeton, 1959, 385 pp.  mathscinet  zmath
24. A. M. Blokhin, R. E. Semenko, “Stationary electrohydrodynamic flows of incomp-ressible polymeric media with strong discontinuity”, J. of Math. Sci., 231:2 (2018), 143–152  mathnet  crossref  mathscinet  zmath  elib


© Steklov Math. Inst. of RAS, 2024