Н. А. Афанасьев, В. М. Головизнин, В. Н. Семенов, А. М. Сипатов, С. С. Нестеров
|
|
|
Список литературы
|
|
|
1. |
S. R. Stow, A. P. Dowling, “Low-Order Modelling of Thermoacoustic Limit Cycles”, Proc. of ASME Turbo Expo 2004: Power for Land, Sea, and Air, v. 1, Turbo Expo 2004, 2004, 775–786 |
2. |
S. R. Stow, A. P. Dowling, “A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations”, ASME. J. Eng. Gas Turbines Power, 131:3 (2009), 031502 |
3. |
X. Han, J. Li, A. S. Morgans, “Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model”, Combustion and Flame, 162:10 (2015), 3632–3647 |
4. |
O. Schulz, U. Doll, D. Ebi, J. Droujko, C. Bourquard, N. Noiray, “Thermoacoustic instability in a sequential combustor: Large eddy simulation and experiments”, Proc. of Comb. Ins., 37:4 (2019), 5325–5332 |
5. |
I. Hernández, G. Staffelbach, T. Poinsot, J. C. R. Casado, J. B. W. Kok, “LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor”, Comptes Rendus Mécanique, 341:1-2 (2013), 121–130 |
6. |
P. Wolf, G. Staffelbach, A. Roux, L. Gicquel, T. Poinsot, V. Moureau, “Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines”, Comptes Rendus Mécanique, 337:6-7 (2009), 385–394 |
7. |
C. F. Silva, T. Emmert, Stefan Jaensch, W. Polifke, “Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame”, Combustion and Flame, 162:9 (2015), 3370–3378 |
8. |
E. Courtine, L. Selle, T. Poinsot, “DNS of Intrinsic ThermoAcoustic modes in laminar premixed flames”, Combustion and Flame, 162:11 (2015), 4331–4341 |
9. |
J. Li, D. Yang, C. Luzzato, A. S. Morgans, Open Source Combustion Instability Low Order Simulator (OSCILOS), Technical Report, 2017 |
10. |
S. Ducruix, D. Durox, S. Candel, “Theoretical and experimental determinations of the transfer function of a laminar premixed flame”, Proc. of Comb. Inst., 28 (2000), 765–773 |
11. |
Z. Han, S. Hochgreb, “The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model”, Proc. of the Combustion Inst., 35 (2015), 3309–3315 |
12. |
T. Schuller, D. Durox, S. Candel, “A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics”, Combustion and Flame, 134 (2003), 21–34 |
13. |
H. Krediet, C. Beck, W. Krebs, J. Kok, “Saturation mechanism of the heat release response of a premixed swirl flame using LES”, Proc. of Comb. Inst., 34 (2013), 1223–1230 |
14. |
X. Han, A. S. Morgans, “Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver”, Combustion & Flame, 162 (2015), 1778–1792 |
15. |
F. A. Williams, “3. Turbulent Combustion”, The Mathematics of Combustion, SIAM, Philadelphia, 1985, 97–131 |
16. |
В. М. Головизнин, М. А. Зайцев, С. А. Карабасов, И. А. Короткин, Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных систем, Изд-во Московского университета, M., 2013, 467 с. [V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh system, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.] |
17. |
В. М. Головизнин, С. А. Карабасов, “Нелинейная коррекция схемы Кабаре”, Матем. моделирование, 10:12 (1998), 107–123 [V. M. Goloviznin, S. A. Karabasov, “Nelineinaia korrektsia skhemy Kabare”, Matem. Modelirovanie, 10:12 (1998), 107–123] |
18. |
Б. В. Раушенбах, Вибрационное горение, Физматлит, М., 1961, 500 с. [B. V. Raushenbakh, Vibratsionnoe gorenie, Fizmatlit, M., 1961, 500 pp.] |
19. |
В. М. Головизнин, А. А. Самарский, “Некоторые свойства разностной схемы “кабаре””, Матем. моделирование, 10:1 (1998), 101–116 [V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “kabare””, Matem. Modelirovanie, 10:1 (1998), 101–116] |
20. |
A. Chintagunta, S. E. Naghibi, S. A. Karabasov, “Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems”, Comp. & Fluids, 169 (2018) |