|
|
|
References
|
|
|
1. |
C. Meneveau, J. Katz, “Scale-invariance and turbulence models for large-eddy simulation”, Annu. Rev. Fluid. Mech, 32 (2000), 1–32 |
2. |
P. R. Spalart, “Strategies for turbulence modelling and simulations”, Int. J. Heat Fluid Flow, 21 (2000), 252–263 |
3. |
B. Chaouat, “The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows”, Flow Turbulence Combust, 99 (2017), 279–327 |
4. |
U. Piomelli, E. Balaras, “Wall-layer models for large-eddy simulations”, Annu. Rev. Fluid. Mech, 34 (2002), 349–374 |
5. |
J. M. Delery, “Shock wave/turbulent boundary layer interaction and its control”, Prog. Aerospace Sci, 22:4 (1985), 209–280 |
6. |
D. Knight, H. Yan, A. G. Panaras, A. Zheltovodov, “Advances in CFD prediction of shock wave turbulent boundary layer interactions”, Prog. Aerosp. Sci, 39 (2003), 121–184 |
7. |
P. R. Spalart, K. V. Belyaev, A. V. Garbaruk, M. L. Shur, M. Kh. Strelets, A. K. Travin, “Large-eddy and direct numerical simulations of the Bachalo-Johnson flow with shock-induced separation”, Flow Turbulence Combust, 99 (2017), 865–885 |
8. |
M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turbulence Combust, 88 (2012), 431–449 |
9. |
R. Balin, K. E. Jansen, P. R. Spalart, Wall-modeled LES of flow over a Gaussian bump with strong pressure gradients and separation, AIAA Paper 2020–3012, 19 pp. |
10. |
M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29 (2008), 1638–1649 |
11. |
S. Bakhne, A. I. Troshin, “Sravnenie protivopotochnykh i simmetrichnykh WENO-skhem pri modelirovanii bazovykh turbulentnykh techenii metodom krupnykh vikhrei”, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 63:6 (2023), 1024–1039 |
12. |
N. J. Mullenix, D. V. Gaitonde, A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows, AIAA paper 2011-366, 18 pp. |
13. |
S. Zhao, N. Lardjane, I. Fedioun, “Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows”, Comp. Fluids, 95 (2014), 74–87 |
14. |
A. Suresh, H. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta time stepping”, J. Comp. Phys, 136:1 (1997), 83–99 |
15. |
V. Pasquariello, S. Hickel, N. A. Adams, “Unsteady effects of strong shock-wave/boundary-layer interaction at High Reynolds number”, J. Fluid Mech, 823 (2017), 617–657 |
16. |
D. Daub, S. Willems, A. Gulhan, “Experimental results on unsteady shock-wave/boundary layer interaction induced by an impinging shock”, CEAS Space J., 8:1 (2015), 3–12 |
17. |
F. R. Menter, “Review of the shear-stress transport turbulence model experience from an industrial perspective”, Int. J. Comput. Fluid Dyn., 23:4 (2009), 305–316 |
18. |
M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93 (2014), 63–92 |
19. |
M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust, 95 (2015), 709–737 |
20. |
A. I. Troshin, S. S. Molev, V. V. Vlasenko, S. V. Mikhailov, S. Bakhne, S. V. Matyash, “Modelirivanie turbulentnykh techenii na osnove podkhoda IDDES s pomoshchiu programmy zFlare”, Vych. Mekhanika sploshnykh sred, 16:2 (2023), 203–218 |
21. |
R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 |
22. |
Z. Wang, J. Zhu, N. Zhao, “A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations”, J. Comp. Phys., 429 (2023), 110006 |
23. |
E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Physics: Conference Series, 929 (2017), 012099 |
24. |
S. Bakhne, V. Sabelnikov, “A method for choosing the spatial and temporal approximations for the LES approach”, Fluids, 7:12 (2022), 376 |
25. |
A. O. Budnikova, “Podkhod k uchetu vzaimodeistviia RANS- i LES-oblastei pogranichnogo sloiia v raschetakh metodom SST-IDDes”, Trudy MFTI, 14:4 (56) (2022), 11–19 |
26. |
U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, P. R. Spalart, “The inner-outer layer interface in large-eddy simulations with wall-layer models”, Int. J. Heat Fluid Flow, 24:4 (2003), 538–550 |
27. |
A. Troshin, S. Bakhne, V. Sabelnikov, “Numerical and physical aspects of large-eddy simulation of turbulent mixing in a helium-air supersonic co-flowing jet”, Prog. Turbulence IX, Proc. iTi Conference on Turbulence, 2021, 297–302 |
28. |
J. G. Ballouz, N. T. Ouellette, “Tensor geometry in the turbulent cascade”, J. Fluid Mech., 835 (2018), 1048–1064 |