RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie

Mat. Model., 2023, Volume 35, Number 10, Pages 36–52 (Mi mm4498)

Application of hybrid RANS/LES methods for the simulation of shock-induced turbulent boundary layer separation
A. I. Troshin, S. V. Bakhne

References

1. C. Meneveau, J. Katz, “Scale-invariance and turbulence models for large-eddy simulation”, Annu. Rev. Fluid. Mech, 32 (2000), 1–32  crossref  mathscinet  zmath
2. P. R. Spalart, “Strategies for turbulence modelling and simulations”, Int. J. Heat Fluid Flow, 21 (2000), 252–263  crossref
3. B. Chaouat, “The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows”, Flow Turbulence Combust, 99 (2017), 279–327  crossref
4. U. Piomelli, E. Balaras, “Wall-layer models for large-eddy simulations”, Annu. Rev. Fluid. Mech, 34 (2002), 349–374  crossref  mathscinet  zmath
5. J. M. Delery, “Shock wave/turbulent boundary layer interaction and its control”, Prog. Aerospace Sci, 22:4 (1985), 209–280  crossref
6. D. Knight, H. Yan, A. G. Panaras, A. Zheltovodov, “Advances in CFD prediction of shock wave turbulent boundary layer interactions”, Prog. Aerosp. Sci, 39 (2003), 121–184  crossref
7. P. R. Spalart, K. V. Belyaev, A. V. Garbaruk, M. L. Shur, M. Kh. Strelets, A. K. Travin, “Large-eddy and direct numerical simulations of the Bachalo-Johnson flow with shock-induced separation”, Flow Turbulence Combust, 99 (2017), 865–885  crossref
8. M. S. Gritskevich, A. V. Garbaruk, J. Schutze, F. R. Menter, “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turbulence Combust, 88 (2012), 431–449  crossref  zmath
9. R. Balin, K. E. Jansen, P. R. Spalart, Wall-modeled LES of flow over a Gaussian bump with strong pressure gradients and separation, AIAA Paper 2020–3012, 19 pp.
10. M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, Int. J. Heat Fluid Flow, 29 (2008), 1638–1649  crossref
11. S. Bakhne, A. I. Troshin, “Sravnenie protivopotochnykh i simmetrichnykh WENO-skhem pri modelirovanii bazovykh turbulentnykh techenii metodom krupnykh vikhrei”, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 63:6 (2023), 1024–1039  mathnet  mathscinet
12. N. J. Mullenix, D. V. Gaitonde, A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows, AIAA paper 2011-366, 18 pp.  zmath
13. S. Zhao, N. Lardjane, I. Fedioun, “Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows”, Comp. Fluids, 95 (2014), 74–87  crossref  mathscinet  zmath
14. A. Suresh, H. Huynh, “Accurate monotonicity-preserving schemes with Runge-Kutta time stepping”, J. Comp. Phys, 136:1 (1997), 83–99  crossref  mathscinet  zmath
15. V. Pasquariello, S. Hickel, N. A. Adams, “Unsteady effects of strong shock-wave/boundary-layer interaction at High Reynolds number”, J. Fluid Mech, 823 (2017), 617–657  crossref  mathscinet  zmath
16. D. Daub, S. Willems, A. Gulhan, “Experimental results on unsteady shock-wave/boundary layer interaction induced by an impinging shock”, CEAS Space J., 8:1 (2015), 3–12  crossref
17. F. R. Menter, “Review of the shear-stress transport turbulence model experience from an industrial perspective”, Int. J. Comput. Fluid Dyn., 23:4 (2009), 305–316  crossref  zmath
18. M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93 (2014), 63–92  crossref
19. M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turbulence Combust, 95 (2015), 709–737  crossref
20. A. I. Troshin, S. S. Molev, V. V. Vlasenko, S. V. Mikhailov, S. Bakhne, S. V. Matyash, “Modelirivanie turbulentnykh techenii na osnove podkhoda IDDES s pomoshchiu programmy zFlare”, Vych. Mekhanika sploshnykh sred, 16:2 (2023), 203–218
21. R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021  crossref  mathscinet  zmath
22. Z. Wang, J. Zhu, N. Zhao, “A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations”, J. Comp. Phys., 429 (2023), 110006  crossref  mathscinet
23. E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Physics: Conference Series, 929 (2017), 012099  crossref
24. S. Bakhne, V. Sabelnikov, “A method for choosing the spatial and temporal approximations for the LES approach”, Fluids, 7:12 (2022), 376  crossref
25. A. O. Budnikova, “Podkhod k uchetu vzaimodeistviia RANS- i LES-oblastei pogranichnogo sloiia v raschetakh metodom SST-IDDes”, Trudy MFTI, 14:4 (56) (2022), 11–19
26. U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, P. R. Spalart, “The inner-outer layer interface in large-eddy simulations with wall-layer models”, Int. J. Heat Fluid Flow, 24:4 (2003), 538–550  crossref  mathscinet
27. A. Troshin, S. Bakhne, V. Sabelnikov, “Numerical and physical aspects of large-eddy simulation of turbulent mixing in a helium-air supersonic co-flowing jet”, Prog. Turbulence IX, Proc. iTi Conference on Turbulence, 2021, 297–302  crossref  mathscinet
28. J. G. Ballouz, N. T. Ouellette, “Tensor geometry in the turbulent cascade”, J. Fluid Mech., 835 (2018), 1048–1064  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025