RUS  ENG
Full version
JOURNALS // Matematicheskoe modelirovanie

Mat. Model., 2023, Volume 35, Number 10, Pages 69–112 (Mi mm4500)

Accuracy evaluation of modern effective codes by comparing calculated and experimental data on the example of problem about supersonic viscous turbulent gas flow around the tandem of back-forcing and forward-forcing steps
S. M. Bosnyakov, M. E. Berezko, Yu. N. Deryugin, A. P. Duben, R. N. Zhuchkov, A. S. Kozelkov, T. K. Kozubskaya, S. V. Matyash, S. V. Mikhailov, M. K. Okulov, V. A. Talyzin, A. A. Utkina, N. A. Kharchenko, V. I. Shevyakov

References

1. A. A. Zheltovodov, L. Ch. Iu. Mekler, E. Kh. Shilein, Osobennosti razvitiia otryvnykh techenii v uglakh szhatiia za volnami razrezheniia, preprint № 10, ITPM SO AN SSSR, Novosibirsk, 1987, 87 pp.
2. S. M. Bosnyakov, A. P. Duben, A. A. Zheltovodov, T. K. Kozubskaya, S. V. Matyash, S. V. Mikhailov, “Numerical Simulation of Supersonic Separated Flow over Inclined Backward-Facing Step Using RANS and LES Methods”, Mathematical Models and Computer Simulations, 12:4 (2020), 453–463  mathnet  crossref  crossref  mathscinet  zmath
3. J. Fang, Y. Yao, A. Zheltovodov, Z. Li, L. Lu, “Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner”, Physics of Fluids, 27 (2015), 125104  crossref
4. A. A. Babukin, S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, S. V. Matyash, S. V. Mikhailov, “Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1020–1033  mathnet  crossref  crossref  mathscinet  zmath
5. I. I. Volonikhin, V. D. Grigorev, V. S. Demianenko, Kh. I. Pisarenko, A. M. Kharitonov, “Sverkhzvukovaia aerodinamicheskaia truba T-313”, Sb. nauchnykh trudov ITPM SO AN SSSR: Aerofizicheskie issledovaniia, Novosibirsk, 1972, 8–11
6. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Numerical methods and programming, 13:3 (2012), 110–125  mathnet
7. E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “Assessment of Delayed DES and Improved Delayed DES Combined with a Shear-Layer-Adapted Subgrid Length-Scale in Separated Flows”, Flow, Turbulence and Combustion, 98:2 (2017), 481–502  crossref  mathscinet
8. P. R. Spalart, S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, Recherche Aerospatiale, 1994, no. 1, 5–21
9. F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, eds. K. Hanjalic, Y. Nagano, M. Tummers, Begell House, Inc., 2003, 625–632
10. A. P. Duben, T. K. Kozubskaya, “Evaluation of Quasi-One-Dimensional Unstructured Method for Jet Noise Prediction”, AIAA J., 57:12, August 28 (2019), 5142–5155  crossref  mathscinet
11. P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356  crossref  mathscinet
12. P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324  crossref  mathscinet  zmath
13. M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93:1 (2014), 63–92  crossref
14. A. V. Struchkov, A. S. Kozelkov, K. Volkov, A. A. Kurkin, R. N. Zhuchkov, A. V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15  crossref
15. Yu. N. Deryugin, A. V. Sarazov, R. N. Zhuchkov, “Specific features of the chimera calculation methodology implemented for unstructured grids”, Mathematical Model and Computer Simulations, 9:5 (2017), 587–597  crossref  mathscinet
16. M.A. Pogosian (red.), Tsifrovye tekhnologii v zhiznennom tsikle rossiiskoi aviatsionnoi tekhniki, Monografiia, Izd-vo MAI, M., 2020, 448 pp.
17. Yu. N. Deryugin, R. N. Zhuchkov, D. K. Zelenskiy, A. S. Kozelkov, A. V. Sarazov, N. F. Kudimov, Yu. M. Lipnickiy, A. V. Panasenko, A. V. Safronov, “Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles”, Mathematical Models and Computer Simulations, 7:2 (2015), 144–153  mathnet  crossref  mathscinet  zmath
18. J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, P. Bradshaw, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, 33:9 (1995), 1561–1568  crossref
19. D. N. Smolkina, O. N. Borisenko, M. V. Cherenkova, A. G. Giniiatullina, M. V. Kuzmenko, N. V. Chukhmanov, E. V. Potekhina, N. V. Popova, M. R. Turusov, “Avtomaticheskii generator nestrukturirovannykh mnogogrannykh setok v preprotsessore paketa programm «LOGOS»”, VANT. Seriia: Matem. modelirovanie fizicheskikh protsessov, 2018, no. 2, 25–39
20. O. A. Bessonov, N. A. Kharchenko, “Programmnaia platforma dlia superkompiuternogo modelirovaniia zadach aerotermodinamiki”, Programmnaia inzheneriia, 12:6 (2021), 302–310  mathscinet
21. N. Kharchenko, M. Kotov, “Aerothermodynamics of the Apollo-4 spacecraft at earth atmosphere conditions with speed more than 10 km/s”, J. Phys.: Conf. Ser., 1250 (2019), 10  crossref
22. N. A. Kharchenko, N. A. Nosenko, “Chislennoe modelirovanie obtekaniia vysokoskorostnym potokom tsilindricheski-konicheskogo tela i dvoinogo konusa”, Matematicheskoe modelirovanie i chislennye metody, 2022, no. 3, 14
23. ANSYS Fluent User's Guide, Release 2021 R1, ANSYS, Inc., January 2021
24. M. L. Shur, M. K. Strelets, A. K. Travin, P. R. Spalart, “Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction”, AIAA Journal, 38:5 (2000)  crossref
25. P. E. Smirnov, F. R. Menter, Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term, ASME Paper GT 2008–50480, Berlin, Germany, 2008
26. FlowVision, Rukovodstvo polzovatelia. Versiia 3.12.05, OOO “TESIS”, M., 2021
27. “Prakticheskie aspekty resheniia zadach vneshnei i vnutrennei aerodinamiki s primeneniem tekhnologii ZEUS v ramkakh paketa EWT-TsAGI”, Sb. statei, Trudy TsAGI, 2735, 2015
28. A. V. Garbaruk, M. Kh. Strelets, A. K. Travin, M. L. Shur, Sovremennye podkhody k modelirovaniiu turbulentnosti, Iz-vo Politekhnicheskogo universiteta, Sankt-Peterburg, 2016
29. R. D. Cecora, B. Eisfeld, A. Probst, S. Crippa, R. Radespiel, Differential Reynolds Stress Modeling for Aeronautics, AIAA Paper 2012–0465, 2012
30. R. D. Cecora, R. Radespiel, B. Eisfeld, A. Probst, “Differential Reynolds-Stress Modeling for Aeronautics”, AIAA Journal, 53:3 (2015), 739–755  crossref
31. S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Metod rascheta otryvnykh techenii klassa IDDES na osnove modeli turbulentnosti DRSM”, Materialy dokladov konferentsii «XXVI Vserossiiskii seminar s mezhdunarodnym uchastiem po struinym, otryvnym i nestatsionarnym techeniiam», S.-P., 2022
32. S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Testirovanie metoda rascheta otryvnykh techenii na osnove podkhoda IDDES i modeli turbulentnosti klassa DRSM”, Sbornik tezisov «Vychislitelnyi eksperiment v aeroakustike i aerodinamike» (g. Svetlogorsk, Kaliningradskaia obl., 2022)
33. E. K. Guseva, A. V. Garbaruk, M. Kh. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Phys.: Conf. Ser., 929 (2017), 012099  crossref
34. M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turb. Combust, 95:4 (2015), 709–737  crossref


© Steklov Math. Inst. of RAS, 2025