С. М. Босняков, М. Э. Березко, Ю. Н. Дерюгин, А. П. Дубень, Р. Н. Жучков, А. С. Козелков, Т. К. Козубская, С. В. Матяш, С. В. Михайлов, М. К. Окулов, В. А. Талызин, А. А. Уткина, Н. А. Харченко, В. И. Шевяков
|
|
|
Список литературы
|
|
|
1. |
А. А. Желтоводов, Л. Ч. Ю. Меклер, Э. Х. Шилейн, Особенности развития отрывных течений в углах сжатия за волнами разрежения, препринт № 10, ИТПМ СО АН СССР, Новосибирск, 1987, 87 с. [A. A. Zheltovodov, L. Ch. Iu. Mekler, E. Kh. Shilein, Osobennosti razvitiia otryvnykh techenii v uglakh szhatiia za volnami razrezheniia, preprint № 10, ITPM SO AN SSSR, Novosibirsk, 1987, 87 pp.] |
2. |
С. М. Босняков, А. П. Дубень, А. А. Желтоводов, Т. К. Козубская, С. В. Матяш, С. В. Михайлов, “Численное моделирование сверхзвукового отрывного обтекания обратного наклонного уступа методами RANS и LES”, Матем. моделир., 31:11 (2019), 3–20 ; S. M. Bosnyakov, A. P. Duben, A. A. Zheltovodov, T. K. Kozubskaya, S. V. Matyash, S. V. Mikhailov, “Numerical Simulation of Supersonic Separated Flow over Inclined Backward-Facing Step Using RANS and LES Methods”, Mathematical Models and Computer Simulations, 12:4 (2020), 453–463 |
3. |
J. Fang, Y. Yao, A. Zheltovodov, Z. Li, L. Lu, “Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner”, Physics of Fluids, 27 (2015), 125104 |
4. |
А. А. Бабулин, С. М. Босняков, В. В. Власенко, М. Ф. Енгулатова, С. В. Матяш, С. В. Михайлов, “Опыт валидации и настройки моделей турбулентности применительно к задаче об отрыве пограничного слоя на клине конечной ширины”, Журнал вычислительной математики и математической физики, 56:6 (2016), 1034–1048 ; A. A. Babukin, S. M. Bosnyakov, V. V. Vlasenko, M. F. Engulatova, S. V. Matyash, S. V. Mikhailov, “Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1020–1033 |
5. |
И. И. Волонихин, В. Д. Григорьев, В. С. Демьяненко, Х. И. Писаренко, А. М. Харитонов, “Сверхзвуковая аэродинамическая труба Т-313”, Сб. научных трудов ИТПМ СО АН СССР: Аэрофизические исследования, Новосибирск, 1972, 8–11 [I. I. Volonikhin, V. D. Grigorev, V. S. Demianenko, Kh. I. Pisarenko, A. M. Kharitonov, “Sverkhzvukovaia aerodinamicheskaia truba T-313”, Sb. nauchnykh trudov ITPM SO AN SSSR: Aerofizicheskie issledovaniia, Novosibirsk, 1972, 8–11] |
6. |
И. В. Абалакин, П. А. Бахвалов, А. В. Горобец, А. П. Дубень, Т. К. Козубская, “Параллельный программный комплекс NOISETTE для крупномасштабных расчетов задач аэродинамики и аэроакустики”, Вычислительные методы и программирование, 13:3 (2012), 110–125 [I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Numerical methods and programming, 13:3 (2012), 110–125] |
7. |
E. K. Guseva, A. V. Garbaruk, M. K. Strelets, “Assessment of Delayed DES and Improved Delayed DES Combined with a Shear-Layer-Adapted Subgrid Length-Scale in Separated Flows”, Flow, Turbulence and Combustion, 98:2 (2017), 481–502 |
8. |
P. R. Spalart, S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, Recherche Aerospatiale, 1994, no. 1, 5–21 |
9. |
F. R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, eds. K. Hanjalic, Y. Nagano, M. Tummers, Begell House, Inc., 2003, 625–632 |
10. |
A. P. Duben, T. K. Kozubskaya, “Evaluation of Quasi-One-Dimensional Unstructured Method for Jet Noise Prediction”, AIAA J., 57:12, August 28 (2019), 5142–5155 |
11. |
P. Bakhvalov, I. Abalakin, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 |
12. |
P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comput. Fluids, 157 (2017), 312–324 |
13. |
M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems”, Flow Turbulence Combust, 93:1 (2014), 63–92 |
14. |
A. V. Struchkov, A. S. Kozelkov, K. Volkov, A. A. Kurkin, R. N. Zhuchkov, A. V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 |
15. |
Yu. N. Deryugin, A. V. Sarazov, R. N. Zhuchkov, “Specific features of the chimera calculation methodology implemented for unstructured grids”, Mathematical Model and Computer Simulations, 9:5 (2017), 587–597 |
16. |
М. А. Погосян (ред.), Цифровые технологии в жизненном цикле российской авиационной техники, Монография, Изд-во МАИ, М., 2020, 448 с. [M.A. Pogosian (red.), Tsifrovye tekhnologii v zhiznennom tsikle rossiiskoi aviatsionnoi tekhniki, Monografiia, Izd-vo MAI, M., 2020, 448 pp.] |
17. |
Ю. Н. Дерюгин, Р. Н. Жучков, Д. К. Зеленский, А. С. Козелков, А. С. Саразов, Н. Ф. Кудимов, Ю. М. Липницкий, А. В. Панасенко, А. В. Сафронов, “Результаты валидации многофункционального пакета программ ЛОГОС при решении задач аэрогазодинамики старта и полета ракет-носителей”, Матем. моделирование, 26:9 (2014), 83–95 ; Yu. N. Deryugin, R. N. Zhuchkov, D. K. Zelenskiy, A. S. Kozelkov, A. V. Sarazov, N. F. Kudimov, Yu. M. Lipnickiy, A. V. Panasenko, A. V. Safronov, “Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles”, Mathematical Models and Computer Simulations, 7:2 (2015), 144–153 |
18. |
J. Dacles-Mariani, G. G. Zilliac, J. S. Chow, P. Bradshaw, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, 33:9 (1995), 1561–1568 |
19. |
Д. Н. Смолкина, О. Н. Борисенко, М. В. Черенкова, А. Г. Гиниятуллина, М. В. Кузьменко, Н. В. Чухманов, Е. В. Потехина, Н. В. Попова, М. Р. Турусов, “Автоматический генератор неструктурированных многогранных сеток в препроцессоре пакета программ «ЛОГОС»”, ВАНТ. Серия: Матем. моделир. физич. процессов, 2018, № 2, 25–39 [D. N. Smolkina, O. N. Borisenko, M. V. Cherenkova, A. G. Giniiatullina, M. V. Kuzmenko, N. V. Chukhmanov, E. V. Potekhina, N. V. Popova, M. R. Turusov, “Avtomaticheskii generator nestrukturirovannykh mnogogrannykh setok v preprotsessore paketa programm «LOGOS»”, VANT. Seriia: Matem. modelirovanie fizicheskikh protsessov, 2018, no. 2, 25–39] |
20. |
О. А. Бессонов, Н. А. Харченко, “Программная платформа для суперкомпьютерного моделирования задач аэротермодинамики”, Программная инженерия, 12:6 (2021), 302–310 [O. A. Bessonov, N. A. Kharchenko, “Programmnaia platforma dlia superkompiuternogo modelirovaniia zadach aerotermodinamiki”, Programmnaia inzheneriia, 12:6 (2021), 302–310] |
21. |
N. Kharchenko, M. Kotov, “Aerothermodynamics of the Apollo-4 spacecraft at earth atmosphere conditions with speed more than 10 km/s”, J. Phys.: Conf. Ser., 1250 (2019), 10 |
22. |
Н. А. Харченко, Н. А. Носенко, “Численное моделирование обтекания высокоскоростным потоком цилиндрически-конического тела и двойного конуса”, Математическое моделирование и численные методы, 2022, № 3, 14 [N. A. Kharchenko, N. A. Nosenko, “Chislennoe modelirovanie obtekaniia vysokoskorostnym potokom tsilindricheski-konicheskogo tela i dvoinogo konusa”, Matematicheskoe modelirovanie i chislennye metody, 2022, no. 3, 14] |
23. |
ANSYS Fluent User's Guide, Release 2021 R1, ANSYS, Inc., January 2021 |
24. |
M. L. Shur, M. K. Strelets, A. K. Travin, P. R. Spalart, “Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction”, AIAA Journal, 38:5 (2000) |
25. |
P. E. Smirnov, F. R. Menter, Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term, ASME Paper GT 2008–50480, Berlin, Germany, 2008 |
26. |
FlowVision, Руководство пользователя. Версия 3.12.05, ООО “ТЕСИС”, М., 2021 [FlowVision, Rukovodstvo polzovatelia. Versiia 3.12.05, OOO “TESIS”, M., 2021] |
27. |
“Практические аспекты решения задач внешней и внутренней аэродинамики с применением технологии ZEUS в рамках пакета EWT-ЦАГИ”, Сб. статей, Труды ЦАГИ, 2735, 2015 [“Prakticheskie aspekty resheniia zadach vneshnei i vnutrennei aerodinamiki s primeneniem tekhnologii ZEUS v ramkakh paketa EWT-TsAGI”, Sb. statei, Trudy TsAGI, 2735, 2015] |
28. |
А. В. Гарбарук, М. Х. Стрелец, А. К. Травин, М. Л. Шур, Современные подходы к моделированию турбулентности, Изд-во Политехнического университета, С.-П., 2016 [A. V. Garbaruk, M. Kh. Strelets, A. K. Travin, M. L. Shur, Sovremennye podkhody k modelirovaniiu turbulentnosti, Iz-vo Politekhnicheskogo universiteta, Sankt-Peterburg, 2016] |
29. |
R. D. Cecora, B. Eisfeld, A. Probst, S. Crippa, R. Radespiel, Differential Reynolds Stress Modeling for Aeronautics, AIAA Paper 2012–0465, 2012 |
30. |
R. D. Cecora, R. Radespiel, B. Eisfeld, A. Probst, “Differential Reynolds-Stress Modeling for Aeronautics”, AIAA Journal, 53:3 (2015), 739–755 |
31. |
С. Бахнэ, А. В. Волков, И. С. Матяш, С. В. Матяш, А. И. Трошин, “Метод расчёта отрывных течений класса IDDES на основе модели турбулентности DRSM”, Матер. докладов конференции «XXVI Всероссийский семинар с международным участием по струйным, отрывным и нестационарным течениям», С.-П., 2022 [S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Metod rascheta otryvnykh techenii klassa IDDES na osnove modeli turbulentnosti DRSM”, Materialy dokladov konferentsii «XXVI Vserossiiskii seminar s mezhdunarodnym uchastiem po struinym, otryvnym i nestatsionarnym techeniiam», S.-P., 2022] |
32. |
С. Бахнэ, А. В. Волков, И. С. Матяш, С. В. Матяш, А. И. Трошин, “Тестирование метода расчёта отрывных течений на основе подхода IDDES и модели турбулентности класса DRSM”, Сборник тезисов «Вычислительный эксперимент в аэроакустике и аэродинамике» (г. Светлогорск, Калининградская обл., 2022) [S. Bakhne, A. V. Volkov, I. S. Matiash, S. V. Matiash, A. I. Troshin, “Testirovanie metoda rascheta otryvnykh techenii na osnove podkhoda IDDES i modeli turbulentnosti klassa DRSM”, Sbornik tezisov «Vychislitelnyi eksperiment v aeroakustike i aerodinamike» (g. Svetlogorsk, Kaliningradskaia obl., 2022)] |
33. |
E. K. Guseva, A. V. Garbaruk, M. Kh. Strelets, “An automatic hybrid numerical scheme for global RANS-LES approaches”, J. Phys.: Conf. Ser., 929 (2017), 012099 |
34. |
M. L. Shur, P. R. Spalart, M. K. Strelets, A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows”, Flow Turb. Combust, 95:4 (2015), 709–737 |