RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal

Mosc. Math. J., 2001, том 1, номер 3, страницы 307–313 (Mi mmj22)

Euclidean Gibbs states of quantum crystals
S. A. Albeverio, Yu. G. Kondrat'ev, T. Pasurek, M. Röckner

Список литературы

1. S. Albeverio, R. Høegh-Krohn, “Homogeneous random fields and statistical mechanics”, J. Funct. Anal., 19 (1975), 242–272  crossref  mathscinet  zmath
2. S. Albeverio, Yu. G. Kondratiev, R. A. Minlos, A. L. Rebenko, “Small-mass behavior of quantum Gibbs states for lattice models with unbounded spins”, J. Statist. Phys., 92:5–6 (1998), 1153–1172  crossref  mathscinet  zmath
3. Albeverio S., Kondratiev Yu. G., Pasurek T., Röckner M., BiBoS preprint, 2001
4. S. Albeverio, Yu. G. Kondratiev, M. Röckner, “Ergodicity of $L^2$-semigroups and extremality of Gibbs states”, J. Funct. Anal., 144:2 (1997), 394–423  crossref  mathscinet  zmath
5. S. Albeverio, Yu. G. Kondratiev, M. Röckner, “Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states”, J. Funct. Anal., 149 (1997), 2  crossref  mathscinet  zmath
6. S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “Uniqueness of Gibbs states for quantum lattice systems”, Probab. Theory Related Fields, 108:2 (1997), 193–218  crossref  mathscinet  zmath
7. S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “A priori estimates and existence of Gibbs measures: a simplified proof”, C. R. Acad. Sci. Paris Sér. I Math., 328:11 (1999), 1049–1054  mathscinet  zmath
8. S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “A priori estimates for symmetrizing measures and their applications to Gibbs states”, J. Funct. Anal., 171:2 (2000), 366–400  crossref  mathscinet  zmath
9. S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “Glauber dynamics for quantum lattice systems”, Rev. Math. Phys., 13:1 (2001), 51–124  crossref  mathscinet  zmath
10. V. S. Barbulyak, Yu. G. Kondratiev, “Functional integrals and quantum lattice systems”, Dokl. Akad. Nauk Ukrain. SSR, 8 (1991), 31–34  mathscinet; 9 (1991), 38–40  mathscinet; 10 (1991), 19–21  mathscinet
11. J. Béllissard, R. Høegh-Krohn, “Compactness and the maximal Gibbs state for random Gibbs fields on a lattice”, Comm. Math. Phys., 84:3 (1982), 297–327  crossref  mathscinet  zmath  adsnasa
12. M. Cassandro, E. Olivieri, A. Pellegrinotti, E. Presutti, “Existence and uniqueness of DLR measures for unbounded spin systems”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41:4 (1977/78), 313–334  crossref  mathscinet  zmath
13. R. L. Dobrushin, “Prescribing a system of random variables by conditional distributions”, Theory Probab. Appl., 15 (1970), 458–486  mathnet  crossref  zmath
14. J. Fröhlich, “Schwinger functions and their generating functionals. II. Markovian and generalized path space measures on $S^1$”, Advances in Math., 23:2 (1977), 119–180  crossref  mathscinet  zmath
15. H.-O. Georgii, Gibbs measures and phase transitions, Walter de Gruyter & Co., Berlin, 1988  mathscinet  zmath
16. S. A. Globa, Yu. G. Kondratiev, “Construction of the Gibbs states of quantum lattice systems”, Application of methods of functional analysis in problems of mathematical physics, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1987, 4–16 (Russian)  mathscinet; English transition: Selecta Math. Soviet, 9:3 (1990), 297–307  zmath
17. V. A. Malyshev, R. A. Minlos, Gibbs random fields, “Nauka”, Moscow, 1985 (Russian)  mathscinet
18. R. A. Minlos, A. Verbeure, V. A. Zagrebnov, “A quantum crystal model in the light-mass limit: Gibbs states”, Rev. Math. Phys., 12:7 (2000), 981–1032  crossref  mathscinet  zmath
19. H. Osada, H. Spohn, “Gibbs measures relative to Brownian motion”, Ann. Probab., 27:3 (1999), 1183–1207  crossref  mathscinet  zmath
20. Y. M. Park, H. J. Yoo, “A characterization of Gibbs states of lattice boson systems”, J. Statist. Phys., 75:1-2 (1994), 215–239  crossref  mathscinet  zmath  adsnasa
21. C. Preston, Random filds, Lecture Notes in Math., 534, Springer-Verlag, Berlin, 1976  mathscinet  zmath
22. G. Royer, “Unicité de certaines mesures quasi-invariantes sur $\mathcal C(\mathbb R)$”, Ann. Sci. École Norm. Sup. (4), 8:3 (1975), 319–338  mathscinet  zmath


© МИАН, 2025