RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal

Mosc. Math. J., 2008, том 8, номер 4, страницы 813–842 (Mi mmj330)

A New Approach to the Representation Theory of the Symmetric Groups, IV. $\mathbb Z_2$-Graded Groups and Algebras; Projective Representations of the Group $S_n$
A. M. Vershik, A. N. Sergeev

Список литературы

1. J. Brundan, A. Kleshchev, “Representation theory of symmetric groups and their double covers”, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, 31–53  mathscinet  zmath
2. I. V. Cherednik, “Special bases of irreducible representations of a degenerate affine Hecke algebra”, Funktsional. Anal. i Prilozhen., 20:1 (1986), 87–88 (Russian)  mathnet  crossref  mathscinet  zmath; English translation: Funct. Anal. Appl., 20:1 (1986), 76–78  crossref  mathscinet  zmath
3. W. Fulton, J. Harris, Representation theory, A first course, Readings in Mathematics, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991  mathscinet  zmath
4. T. Józefiak, “Semisimple superalgebras”, Algebra – some current trends (Varna, 1986), Lecture Notes in Math., 1352, Springer, Berlin, 1988, 96–113  mathscinet
5. A. Jucis, “Factorization of Young's projection operators for symmetric groups”, Litovsk. Fiz. Sb., 11 (1971), 1–10  mathscinet
6. A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Rep. Mathematical Phys., 5:1 (1974), 107–112  crossref  mathscinet  zmath
7. T. Khongsap, W. Wang, Hecke–Clifford algebras and spin Hecke algebras I: the classical affine type, E-print arxiv: 0704.0201[math.RT]  mathscinet
8. A. Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005  mathscinet  zmath
9. A. O. Morris, “Projective representations of finite reflection groups. III”, Comm. Algebra, 32:7 (2004), 2679–2694  crossref  mathscinet  zmath
10. G. E. Murphy, “A new construction of Young's seminormal representation of the symmetric groups”, J. Algebra, 69:2 (1981), 287–297  crossref  mathscinet  zmath
11. M. Nazarov, “Young's orthogonal form of irreducible projective representations of the symmetric group”, J. London Math. Soc. (2), 42:3 (1990), 437–451  crossref  mathscinet  zmath
12. M. Nazarov, “Young's symmetrizers for projective representations of the symmetric group”, Adv. Math., 127:2 (1997), 190–257  crossref  mathscinet  zmath
13. M. Nazarov, A. Sergeev, “Centralizer construction of the Yangian of the queer Lie superalgebra”, Studies in Lie theory, Progr. Math., 243, Birkhäuser Boston, Boston, MA, 2006, 417–441  mathscinet  zmath
14. A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math. (N.S.), 2:4 (1996), 581–605  crossref  mathscinet  zmath
15. J. Schur, “On the representation of the symmetric and alternating groups by fractional linear substitutions”, Internat. J. Theoret. Phys., 40:1 (2001), 413–458  crossref  mathscinet  zmath  adsnasa; Translated from the German by Marc-Felix Otto: J. Reine Angew. Math., 139 (1911), 155–250  zmath
16. A. Sergeev, “The Howe duality and the projective representations of symmetric groups”, Represent. Theory, 3 (1999), 416–434  crossref  mathscinet  zmath
17. A. N. Sergeev, “Tensor algebra of the identity representation as a module over the Lie superalgebras $\operatorname{Gl}|(n,m)$ and $Q(n)$”, Mat. Sb. (N.S.), 123(165):3 (1984), 422–430  mathnet  mathscinet  zmath
18. A. M. Vershik, “Local algebras and a new version of Young's orthogonal form”, Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., 26, PWN, Warsaw, 1990, 467–473  mathscinet
19. A. M. Vershik, “A new approach to the representation theory of the symmetric groups. III. Induced representations and the Frobenius–Young correspondence”, Mosc. Math. J., 6:3 (2006), 567–585  mathnet  mathscinet  zmath
20. A. M. Vershik, S. V. Kerov, “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, Itogi Nauki i Tekhniki. Current problems in mathematics. Newest results, 26, Akad. Nauk SSSR VINITI, Moscow, 1985, 3–56  mathnet  mathscinet  zmath
21. A. M. Vershik, A. Y. Okunkov, “A new approach to representation theory of symmetric groups. II”, Teor. Predst. Din. Sist. Komb. i Algoritm. Metody – 10, Zap. Nauchn. Sem. POMI, 307, POMI, SPb., 2004, 57–98 (Russian)  mathnet  mathscinet  zmath; English translation: J. Math. Sci. (N.Y.), 131:2 (2005), 5471–5494  crossref  mathscinet
22. A. M. Vershik, M. A. Vsemirnov, The local stationary presentation of the alternating groups and normal form, E-print arxiv: math/0703278[math.GR]


© МИАН, 2025