|
|
|
Список литературы
|
|
|
1. |
J. Brundan, A. Kleshchev, “Representation theory of symmetric groups and their double covers”, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publ., River Edge, NJ, 2003, 31–53 |
2. |
I. V. Cherednik, “Special bases of irreducible representations of a degenerate affine
Hecke algebra”, Funktsional. Anal. i Prilozhen., 20:1 (1986), 87–88 (Russian) ; English translation: Funct. Anal. Appl., 20:1 (1986), 76–78 |
3. |
W. Fulton, J. Harris, Representation theory, A first course, Readings in Mathematics, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 |
4. |
T. Józefiak, “Semisimple superalgebras”, Algebra – some current trends (Varna, 1986), Lecture Notes in Math., 1352, Springer, Berlin, 1988, 96–113 |
5. |
A. Jucis, “Factorization of Young's projection operators for symmetric groups”, Litovsk. Fiz. Sb., 11 (1971), 1–10 |
6. |
A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Rep. Mathematical Phys., 5:1 (1974), 107–112 |
7. |
T. Khongsap, W. Wang, Hecke–Clifford algebras and spin Hecke algebras I: the classical
affine type, E-print
arxiv: 0704.0201[math.RT] |
8. |
A. Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005 |
9. |
A. O. Morris, “Projective representations of finite reflection groups. III”, Comm. Algebra, 32:7 (2004), 2679–2694 |
10. |
G. E. Murphy, “A new construction of Young's seminormal representation of the
symmetric groups”, J. Algebra, 69:2 (1981), 287–297 |
11. |
M. Nazarov, “Young's orthogonal form of irreducible projective representations
of the symmetric group”, J. London Math. Soc. (2), 42:3 (1990), 437–451 |
12. |
M. Nazarov, “Young's symmetrizers for projective representations of the symmetric
group”, Adv. Math., 127:2 (1997), 190–257 |
13. |
M. Nazarov, A. Sergeev, “Centralizer construction of the Yangian of the queer Lie superalgebra”, Studies in Lie theory, Progr. Math., 243, Birkhäuser Boston, Boston, MA, 2006, 417–441 |
14. |
A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math. (N.S.), 2:4 (1996), 581–605 |
15. |
J. Schur, “On the representation of the symmetric and alternating groups by
fractional linear substitutions”, Internat. J. Theoret. Phys., 40:1 (2001), 413–458 ; Translated from the German by Marc-Felix Otto: J. Reine Angew. Math., 139 (1911), 155–250 |
16. |
A. Sergeev, “The Howe duality and the projective representations of symmetric groups”, Represent. Theory, 3 (1999), 416–434 |
17. |
A. N. Sergeev, “Tensor algebra of the identity representation as a module over the Lie
superalgebras $\operatorname{Gl}|(n,m)$ and $Q(n)$”, Mat. Sb. (N.S.), 123(165):3 (1984), 422–430 |
18. |
A. M. Vershik, “Local algebras and a new version of Young's orthogonal form”, Topics in algebra, Part 2 (Warsaw, 1988), Banach Center Publ., 26, PWN, Warsaw, 1990, 467–473 |
19. |
A. M. Vershik, “A new approach to the representation theory of the symmetric groups. III.
Induced representations and the Frobenius–Young correspondence”, Mosc. Math. J., 6:3 (2006), 567–585 |
20. |
A. M. Vershik, S. V. Kerov, “Locally semisimple algebras. Combinatorial theory and
the $K_0$-functor”, Itogi Nauki i Tekhniki. Current problems in mathematics. Newest
results, 26, Akad. Nauk SSSR VINITI, Moscow, 1985, 3–56 |
21. |
A. M. Vershik, A. Y. Okunkov, “A new approach to representation theory of symmetric groups. II”, Teor. Predst. Din. Sist. Komb. i Algoritm. Metody – 10, Zap. Nauchn. Sem. POMI, 307, POMI, SPb., 2004, 57–98 (Russian) ; English translation: J. Math. Sci. (N.Y.), 131:2 (2005), 5471–5494 |
22. |
A. M. Vershik, M. A. Vsemirnov, The local stationary presentation of the alternating groups and
normal form, E-print
arxiv: math/0703278[math.GR] |