RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Moscow Mathematical Journal

Mosc. Math. J., 2013, òîì 13, íîìåð 2, ñòðàíèöû 233–265 (Mi mmj496)

Pursuing the double affine Grassmannian III: convolution with affine zastava
Alexander Braverman, Michael Finkelberg

References

1. V. Baranovsky, V. Ginzburg, A. Kuznetsov, “Wilson's Grassmannian and a noncommutative quadric”, Int. Math. Res. Not., 2003:21 (2003), 1155–1197  crossref  mathscinet
2. A. Beilinson, V. Drinfeld, Quantization of Hitchin's Hamiltonians and Hecke eigen-sheaves, Preprint available at http://www.math.uchicago.edu/~mitya/langlands.html
3. I. Biswas, “Parabolic bundles as orbifold bundles”, Duke Math. J., 88:2 (1997), 305–325  crossref  mathscinet  zmath  isi
4. A. Braverman, M. Finkelberg, “Pursuing the double affine Grassmannian. I. Transversal slices via instantons on $A_k$-singularities”, Duke Math. J., 152:2 (2010), 175–206  crossref  mathscinet  zmath  isi
5. A. Braverman, M. Finkelberg, “Dynamical Weyl groups and equivariant cohomology of transversal slices on affine Grassmannians”, Math. Res. Lett., 18:3 (2011), 505–512  crossref  mathscinet  zmath  isi
6. A. Braverman, M. Finkelberg, “Pursuing the double affine Grassmannian. II: Convolution”, Adv. Math., 230:1 (2012), 414–432  crossref  mathscinet  zmath  isi
7. A. Braverman, M. Finkelberg, Semi-infinite Schubert varieties and quantum $K$-theory of flag manifolds, Preprint, arXiv: 1111.2266[math.AG]  mathscinet
8. A. Braverman, M. Finkelberg, D. Gaitsgory, “Uhlenbeck spaces via affine Lie algebras”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 17–135  crossref  mathscinet  zmath
9. A. Braverman, M. Finkelberg, D. Gaitsgory, I. Mirković, “Intersection cohomology of Drinfeld's compactifications”, Selecta Math. (N.S.), 8:3 (2002), 381–418  crossref  mathscinet  zmath
10. A. Braverman, M. Finkelberg, D. Kazhdan, “Affine Gindikin–Karpelevich formula via Uhlenbeck spaces”, Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics, 9, Springer, 2012, 17–30  crossref  mathscinet
11. A. Braverman, D. Gaitsgory, “Geometric Eisenstein series”, Invent. Math., 150:2 (2002), 287–384  crossref  mathscinet  zmath  adsnasa  isi
12. A. Braverman, D. Kazhdan, “The spherical Hecke algebra for affine Kac–Moody groups. I”, Ann. of Math. (2), 174:3 (2011), 1603–1642  crossref  mathscinet  zmath
13. M. Finkelberg, D. Gaitsgory, A. Kuznetsov, “Uhlenbeck spaces for $\mathbb A^2$ and affine Lie algebra $\widehat{\mathfrak{sl}}_n$”, Publ. Res. Inst. Math. Sci., 39:4 (2003), 721–766  crossref  mathscinet  zmath  isi
14. M. Finkelberg, I. Mirković, “Semi-infinite flags. I. Case of global curve $\mathbf P^1$”, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 81–112  mathscinet  zmath
15. M. Finkelberg, L. Rybnikov, Quantization of Drinfeld zastava in type $A$, Preprint, arXiv: 1009.0676[math.AG]  mathscinet; JEMS (to appear)
16. V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality, Preprint, arXiv: alg-geom/9511007
17. Y. Kawamata, “Log crepant birational maps and derived categories”, J. Math. Sci. Univ. Tokyo, 12:2 (2005), 211–231  mathscinet  zmath
18. G. Lusztig, “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, 101, Soc. Math. France, Paris, 1983, 208–229  mathscinet
19. I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math. (2), 166:1 (2007), 95–143  crossref  mathscinet  zmath  isi
20. H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18, American Mathematical Society, Providence, RI, 1999  mathscinet  zmath
21. H. Nakajima, “Sheaves on {ALE} spaces and quiver varieties”, Mosc. Math. J., 7:4 (2007), 699–722, 767  mathnet  mathscinet  zmath  isi
22. H. Nakajima, “Quiver varieties and branching”, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), 003, 37 pp.  mathnet  crossref  mathscinet  zmath  isi
23. H. Nakajima, K. Yoshioka, “Perverse coherent sheaves on blow-up. I. A quiver description”, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011, 349–386  mathscinet  zmath


© ÌÈÀÍ, 2025