|
|
|
References
|
|
|
1. |
V. Baranovsky, V. Ginzburg, A. Kuznetsov, “Wilson's Grassmannian and a noncommutative quadric”, Int. Math. Res. Not., 2003:21 (2003), 1155–1197 |
2. |
A. Beilinson, V. Drinfeld, Quantization of Hitchin's Hamiltonians and Hecke eigen-sheaves, Preprint available at http://www.math.uchicago.edu/~mitya/langlands.html |
3. |
I. Biswas, “Parabolic bundles as orbifold bundles”, Duke Math. J., 88:2 (1997), 305–325 |
4. |
A. Braverman, M. Finkelberg, “Pursuing the double affine Grassmannian. I. Transversal slices via instantons on $A_k$-singularities”, Duke Math. J., 152:2 (2010), 175–206 |
5. |
A. Braverman, M. Finkelberg, “Dynamical Weyl groups and equivariant cohomology of transversal slices on affine Grassmannians”, Math. Res. Lett., 18:3 (2011), 505–512 |
6. |
A. Braverman, M. Finkelberg, “Pursuing the double affine Grassmannian. II: Convolution”, Adv. Math., 230:1 (2012), 414–432 |
7. |
A. Braverman, M. Finkelberg, Semi-infinite Schubert varieties and quantum $K$-theory of flag manifolds, Preprint, arXiv: 1111.2266[math.AG] |
8. |
A. Braverman, M. Finkelberg, D. Gaitsgory, “Uhlenbeck spaces via affine Lie algebras”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 17–135 |
9. |
A. Braverman, M. Finkelberg, D. Gaitsgory, I. Mirković, “Intersection cohomology of Drinfeld's compactifications”, Selecta Math. (N.S.), 8:3 (2002), 381–418 |
10. |
A. Braverman, M. Finkelberg, D. Kazhdan, “Affine Gindikin–Karpelevich formula via Uhlenbeck spaces”, Contributions in Analytic and Algebraic Number Theory, Springer Proceedings in Mathematics, 9, Springer, 2012, 17–30 |
11. |
A. Braverman, D. Gaitsgory, “Geometric Eisenstein series”, Invent. Math., 150:2 (2002), 287–384 |
12. |
A. Braverman, D. Kazhdan, “The spherical Hecke algebra for affine Kac–Moody groups. I”, Ann. of Math. (2), 174:3 (2011), 1603–1642 |
13. |
M. Finkelberg, D. Gaitsgory, A. Kuznetsov, “Uhlenbeck spaces for $\mathbb A^2$ and affine Lie algebra $\widehat{\mathfrak{sl}}_n$”, Publ. Res. Inst. Math. Sci., 39:4 (2003), 721–766 |
14. |
M. Finkelberg, I. Mirković, “Semi-infinite flags. I. Case of global curve $\mathbf P^1$”, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 81–112 |
15. |
M. Finkelberg, L. Rybnikov, Quantization of Drinfeld zastava in type $A$, Preprint, arXiv: 1009.0676[math.AG] ; JEMS (to appear) |
16. |
V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality, Preprint, arXiv: alg-geom/9511007 |
17. |
Y. Kawamata, “Log crepant birational maps and derived categories”, J. Math. Sci. Univ. Tokyo, 12:2 (2005), 211–231 |
18. |
G. Lusztig, “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, 101, Soc. Math. France, Paris, 1983, 208–229 |
19. |
I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math. (2), 166:1 (2007), 95–143 |
20. |
H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18, American Mathematical Society, Providence, RI, 1999 |
21. |
H. Nakajima, “Sheaves on {ALE} spaces and quiver varieties”, Mosc. Math. J., 7:4 (2007), 699–722, 767 |
22. |
H. Nakajima, “Quiver varieties and branching”, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), 003, 37 pp. |
23. |
H. Nakajima, K. Yoshioka, “Perverse coherent sheaves on blow-up. I. A quiver description”, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011, 349–386 |