|
|
|
Список литературы
|
|
|
1. |
S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Nonstandard representation of nonnormal traces”, Dynamics of complex and irregular systems (Bielefeld, 1991), Bielefeld Encount. Math. Phys., VIII, World Sci. Publishing, River Edge, NJ, 1993, 1–11 |
2. |
S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and nonstandard analysis”, Advances in analysis, probability and mathematical physics (Blaubeuren, 1992), Math. Appl., 314, Kluwer Acad. Publ., Dordrecht, 1995, 3–19 |
3. |
S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and compact operators”, J. Funct. Anal., 137:2 (1996), 281–302 |
4. |
N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987 |
5. |
R. Bojanic, E. Seneta, “A unified theory of regularly varying sequences”, Math. Z., 134 (1973), 91–106 |
6. |
N. Bourbaki, Éléments de mathématique. Première partie. (Fasc. II.)
Livre III: Topologie générale, Chap. 1–2, Hermann, Paris, 1961 |
7. |
J. W. Calkin, “Two-sided ideals and congruences in the ring of bounded operators in
Hilbert space”, Ann. of Math. (2), 42 (1941), 839–873 |
8. |
A. H. Chamseddine and A. Connes, “Universal formula for noncommutative geometry actions: unification of
gravity and the standard model”, Phys. Rev. Lett., 77:24 (1996), 4868–4871 |
9. |
A. Connes, “Trace de Dixmier, modules de Fredholm et géométrie riemannienne”, Conformal field theories and related topics (Annecy-le-Vieux, 1988), Nuclear Phys. B Proc. Suppl., 5B (1988), 65–70 |
10. |
A. Connes, “Essay on physics and noncommutative geometry”, The interface of mathematics and particle physics (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press, New York, 1990, 9–48 |
11. |
A. Connes, Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 |
12. |
A. Connes, “Geometry from the spectral point of view”, Lett. Math. Phys., 34:3 (1995), 203–238 |
13. |
A. Connes, “Noncommutative geometry and reality”, J. Math. Phys., 36:11 (1995), 6194–6231 |
14. |
A. Connes, “Brisure de symétrie spontanée et géométrie du point de vue
spectral”, Exp. No. 816, Séminaire Bourbaki, Vol. 1995/96, Astérisque, 241, no. 5, 1997, 313–349 ; J. Geom. Phys., 23:3–4 (1997), 206–234 |
15. |
A. Connes, J. Lott, “Particle models and noncommutative geometry”, Recent advances in field theory (Annecy-le-Vieux, 1990), Nuclear Phys. B Proc. Suppl., 18B (1990) (1991), 29–47 |
16. |
A. Connes, J. Lott, “The metric aspect of noncommutative geometry”, New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 53–93 |
17. |
J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 |
18. |
K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, Commutator structure of operator ideals, submitted |
19. |
K. Dykema, G. Weiss, M. Wodzicki, “Unitarily invariant trace extensions beyond the trace class”, Complex analysis and related topics (Cuernavaca, 1996), Oper. Theory Adv. Appl., 114, Birkhäuser, Basel, 2000, 59–65 |
20. |
E. Fischer, “Über quadratische Formen mit reellen Koeffizienten”, Monatsh. Math. Phys., 16 (1905), 234–249 |
21. |
J. Galambos, E. Seneta, “Regularly varying sequences”, Proc. Amer. Math. Soc., 41 (1973), 110–116 |
22. |
I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Izdat. “Nauka”, Moscow, 1965 (Russian) ; English translation in: Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969 |
23. |
D. Guido, T. Isola, “Singular traces and their applications to geometry”, Operator algebras and quantum field theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 440–456 |
24. |
P. R. Halmos, “Commutators of operators”, Amer. J. Math., 74 (1952), 237–240 |
25. |
U. Hebisch, H. J. Weinert, “Semirings and semifields”, Handbook of algebra, Vol. 1, North-Holland, Amsterdam, 1996, 425–462 |
26. |
N. J. Kalton, “Unusual traces on operator ideals”, Math. Nachr., 134 (1987), 119–130 |
27. |
N. J. Kalton, “Trace-class operators and commutators”, J. Funct. Anal., 86:1 (1989), 41–74 |
28. |
J. Karamata, “Sur certains “Tauberian theorems” de M. M. Hardy et Littlewood”, Mathematica (Cluj), 3 (1930), 33–48 |
29. |
R. Nest, E. Schrohe, “Dixmier's trace for boundary value problems”, Manuscripta Math., 96:2 (1998), 203–218 |
30. |
OMEROS, ODUSSEIA, Ionia, 725 BC |
31. |
A. Pietsch, “Operator ideals with a trace”, Math. Nachr., 100 (1981), 61–91 |
32. |
A. Pietsch, Eigenvalues and $s$-numbers, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics
and its Applications in Physics and Technology], 43, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987 ; Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, Cambridge, 1987 |
33. |
J. V. Varga, “Traces on irregular ideals”, Proc. Amer. Math. Soc., 107:3 (1989), 715–723 |
34. |
G. Weiss, Commutators and operator ideals, Ph.D. thesis, University of Michigan, Ann Arbor, 1975 |
35. |
G. Weiss, “Commutators of Hilbert–Schmidt operators. II”, Integral Equations Operator Theory, 3:4 (1980), 574–600 |
36. |
G. Weiss, “Commutators of Hilbert–Schmidt operators. I”, Integral Equations Operator Theory, 9:6 (1986), 877–892 |
37. |
M. Wodzicki, “Local invariants of spectral asymmetry”, Invent. Math., 75:1 (1984), 143–177 |
38. |
M. Wodzicki, “Noncommutative residue. I. Fundamentals”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 |
39. |
M. Wodzicki, “Algebraic $K$-theory and functional analysis”, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., 120, Birkhäuser, Basel, 1994, 485–496 |
40. |
M. Wodzicki, Algebraic $K$-theory of operator ideals, in preparation |