|
|
|
References
|
|
|
1. |
A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Methods of the qualitative theory of differential equations, Gorkov. Gos. Univ., Gorki, 1984, 22–38 (Russian) ; English translation: Selecta Math. Soviet., 11:1 (1992), 1–11 |
2. |
A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Methods of the qualitative theory of differential equations, Gorkov. Gos. Univ., Gorki, 1987, 24–31 (Russian) ; English translation: Selecta Math. Soviet., 11:1 (1992), 13–17 |
3. |
C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 |
4. |
C. Bonatti, V. Z. Grines, and O. V. Pochinka, “Classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds”, Tr. Mat. Inst. Steklova, 250, 2005, 5–53 (Russian) ; Proc. Steklov Inst. Math., 250 (2005), 1–46 |
5. |
C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces, Astérisque, 250, 1998 |
6. |
V. Z. Grines, “Topological classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic trajectories on surfaces”, Mat. Zametki, 54:3 (1993), 3–17 ; 157 (Russian) ; English translation: Math. Notes, 54:3 (1993), 881–889 |
7. |
V. Z. Grines, S. K. Kapkaeva, and O. V. Pochinka, “A three-color graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Mat. Sb., 205:10 (2014), 19–46 (Russian) ; English translation: Sbornik: Math., 205:10 (2014), 1387–1412 |
8. |
V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Developments in Mathematics, 46, Springer, Cham, 2016 |
9. |
V. Z. Grines, O. V. Pochinka, and S. Van Strien, “On 2-diffeomorphisms with one-dimensional basic sets and a finite number of moduli”, Mosc. Math. J., 16:4 (2016), 727–749 |
10. |
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Tr. Mat. Inst. Steklova, 271, 2010 (Russian) ; English translation: Proc. Steklov Inst. Math., 271 (2010), 103–124 |
11. |
R. Langevin, “Quelques nouveaux invariants des difféomorphismes Morse-Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278 |
12. |
D. Malyshev, A. Morozov, and O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119 |
13. |
T. M. Mitryakova and O. V. Pochinka, “On necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Tr. Mat. Inst. Steklova, 270, 2010, 198–219 (Russian) ; English translation: Proc. Steklov Inst. Math., 270:1 (2010), 194–215 |
14. |
T. M. Mitryakova and O. V. Pochinka, “Realization of cascades on surfaces with finitely many moduli of topological conjugacy”, Matem. Zametki, 93:6 (2013), 902–919 (Russian) ; English translation: Math. Notes, 93:6 (2013), 890–905 |
15. |
A. A. Oshemkov and V. V. Sharko, “On the classification of Morse-Smale flows on two-dimensional manifolds”, Mat. Sb., 189:8 (1998), 93–140 (Russian) ; English translation: Sbornik: Math., 189:8 (1998), 1205–1250 |
16. |
M. M. Peixoto, “On the classification of flows on $2$-manifolds”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York-London, 1973, 389–419 |
17. |
S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 |