RUS  ENG
Полная версия
ЖУРНАЛЫ // Moscow Mathematical Journal

Mosc. Math. J., 2023, том 23, номер 4, страницы 571–590 (Mi mmj868)

Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on surfaces
A. Morozov, O. Pochinka

References

1. A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Methods of the qualitative theory of differential equations, Gorkov. Gos. Univ., Gorki, 1984, 22–38 (Russian)  mathscinet  zmath; English translation: Selecta Math. Soviet., 11:1 (1992), 1–11  mathscinet
2. A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Methods of the qualitative theory of differential equations, Gorkov. Gos. Univ., Gorki, 1987, 24–31 (Russian)  mathscinet  zmath; English translation: Selecta Math. Soviet., 11:1 (1992), 13–17  mathscinet
3. C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391  crossref  mathscinet  zmath
4. C. Bonatti, V. Z. Grines, and O. V. Pochinka, “Classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds”, Tr. Mat. Inst. Steklova, 250, 2005, 5–53 (Russian)  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 250 (2005), 1–46  zmath
5. C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces, Astérisque, 250, 1998  mathscinet
6. V. Z. Grines, “Topological classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic trajectories on surfaces”, Mat. Zametki, 54:3 (1993), 3–17  mathnet  mathscinet  zmath; 157 (Russian)  mathscinet  zmath; English translation: Math. Notes, 54:3 (1993), 881–889  crossref  mathscinet  zmath
7. V. Z. Grines, S. K. Kapkaeva, and O. V. Pochinka, “A three-color graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Mat. Sb., 205:10 (2014), 19–46 (Russian)  mathnet  crossref  mathscinet  zmath; English translation: Sbornik: Math., 205:10 (2014), 1387–1412  crossref  mathscinet  zmath
8. V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Developments in Mathematics, 46, Springer, Cham, 2016  crossref  mathscinet  zmath
9. V. Z. Grines, O. V. Pochinka, and S. Van Strien, “On 2-diffeomorphisms with one-dimensional basic sets and a finite number of moduli”, Mosc. Math. J., 16:4 (2016), 727–749  mathnet  crossref  mathscinet  zmath
10. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Tr. Mat. Inst. Steklova, 271, 2010 (Russian)  mathnet  mathscinet  zmath; English translation: Proc. Steklov Inst. Math., 271 (2010), 103–124  crossref  mathscinet  zmath
11. R. Langevin, “Quelques nouveaux invariants des difféomorphismes Morse-Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278  crossref  mathscinet  zmath
12. D. Malyshev, A. Morozov, and O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119  crossref  mathscinet  zmath
13. T. M. Mitryakova and O. V. Pochinka, “On necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Tr. Mat. Inst. Steklova, 270, 2010, 198–219 (Russian)  mathnet  mathscinet  zmath; English translation: Proc. Steklov Inst. Math., 270:1 (2010), 194–215  crossref  mathscinet  zmath
14. T. M. Mitryakova and O. V. Pochinka, “Realization of cascades on surfaces with finitely many moduli of topological conjugacy”, Matem. Zametki, 93:6 (2013), 902–919 (Russian)  mathnet  crossref  mathscinet  zmath; English translation: Math. Notes, 93:6 (2013), 890–905  crossref  mathscinet  zmath
15. A. A. Oshemkov and V. V. Sharko, “On the classification of Morse-Smale flows on two-dimensional manifolds”, Mat. Sb., 189:8 (1998), 93–140 (Russian)  mathnet  crossref  mathscinet  zmath; English translation: Sbornik: Math., 189:8 (1998), 1205–1250  crossref  mathscinet  zmath
16. M. M. Peixoto, “On the classification of flows on $2$-manifolds”, Dynamical systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York-London, 1973, 389–419  mathscinet
17. S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817  crossref  mathscinet  zmath


© МИАН, 2025