RUS  ENG
Full version
JOURNALS // Trudy Moskovskogo Matematicheskogo Obshchestva

Tr. Mosk. Mat. Obs., 2021, Volume 82, Issue 1, Pages 3–18 (Mi mmo644)

Positive entropy implies chaos along any infinite sequence
Wen Huang, Jian Li, Xiangdong Ye

References

1. F. Blanchard, E. Glasner, S. Kolyada, A. Maass, “On Li–Yorke pairs”, J. Reine Angew. Math., 547 (2002), 51–68  mathscinet  zmath
2. L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23:1 (2010), 217–245  crossref  mathscinet  zmath
3. A. Danilenko, “Entropy theory from the orbital point of view”, Monatsh. Math., 134:2 (2001), 121–141  crossref  mathscinet  zmath
4. M. Einsiedler, T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag, London, 2011  mathscinet  zmath
5. H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981  mathscinet  zmath
6. E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, AMS, Providence, RI, 2003  crossref  mathscinet  zmath
7. E. Glasner, J. P. Thouvenot, B. Weiss, “Entropy theory without a past”, Ergodic Theory Dynam. Systems, 20:5 (2000), 1355–1370  crossref  mathscinet  zmath
8. M. Gromov, “Endomorphisms of symbolic algebraic varieties”, J. Eur. Math. Soc., 1:2 (1999), 109–197  crossref  mathscinet  zmath
9. W. Huang, J. Li, X. Ye, “Stable sets and mean Li–Yorke chaos in positive entropy systems”, J. Funct. Anal., 266:6 (2014), 3377–3394  crossref  mathscinet  zmath  elib
10. W. Huang, L. Xu, Y. Yi, “Asymptotic pairs, stable sets and chaos in positive entropy systems”, J. Funct. Anal., 268:4 (2015), 824–846  crossref  mathscinet  zmath  elib
11. W. Huang, X. Ye, G. Zhang, “Local entropy theory for a countable discrete amenable group action”, J. Funct. Anal., 261:4 (2011), 1028–1082  crossref  mathscinet  zmath  elib
12. D. Kerr, H. Li, “Independence in topological and $C^*$-dynamics”, Math. Ann., 338:4 (2007), 869–926  crossref  mathscinet  zmath  elib
13. D. Kerr, H. Li, “Combinatorial independence and sofic entropy”, Commun. Math. Stat., 1:2 (2013), 213–257  crossref  mathscinet  zmath  elib
14. D. Kerr, H. Li, Ergodic theory: Independence and dichotomies, Springer Monographs in Mathematics, Springer, Cham, 2016  crossref  mathscinet  zmath
15. H. Li, Z. Rong, “Combinatorial independence and naive entropy”, Erg. Th. Dynam. Systems, 41:7 (2021), 2136–2147, arXiv: 1901.02657  crossref  mathscinet  zmath
16. J. Li, X. Ye, “Recent development of chaos theory in topological dynamics”, Acta Math. Sin. (Engl. Ser.), 32:1 (2016), 83–114  crossref  mathscinet  zmath  adsnasa
17. T. Li, J. Yorke, “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–992  crossref  mathscinet  zmath
18. J. Mycielski, “Independent sets in topological algebras”, Fund. Math., 55 (1964), 139–147  crossref  mathscinet  zmath
19. V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, 71, 1952  mathscinet
20. D. Rudolph, B. Weiss, “Entropy and mixing for amenable group actions”, Ann. of Math. (2), 151:3 (2000), 1119–1150  crossref  mathscinet  zmath
21. Z. Wang, G. Zhang, “Chaotic behavior of group actions”, Dynamics and numbers, Contemp. Math., 669, Amer. Math. Soc., Providence, RI, 2016, 299–315  crossref  mathscinet  zmath
22. J. Xiong, “Chaos in a topologically transitive system”, Sci. China. Ser. A, 48:7 (2005), 929–939  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025