|
|
|
References
|
|
|
1. |
F. Blanchard, E. Glasner, S. Kolyada, A. Maass, “On Li–Yorke pairs”, J. Reine Angew. Math., 547 (2002), 51–68 |
2. |
L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23:1 (2010), 217–245 |
3. |
A. Danilenko, “Entropy theory from the orbital point of view”, Monatsh. Math., 134:2 (2001), 121–141 |
4. |
M. Einsiedler, T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag, London, 2011 |
5. |
H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981 |
6. |
E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, AMS, Providence, RI, 2003 |
7. |
E. Glasner, J. P. Thouvenot, B. Weiss, “Entropy theory without a past”, Ergodic Theory Dynam. Systems, 20:5 (2000), 1355–1370 |
8. |
M. Gromov, “Endomorphisms of symbolic algebraic varieties”, J. Eur. Math. Soc., 1:2 (1999), 109–197 |
9. |
W. Huang, J. Li, X. Ye, “Stable sets and mean Li–Yorke chaos in positive entropy systems”, J. Funct. Anal., 266:6 (2014), 3377–3394 |
10. |
W. Huang, L. Xu, Y. Yi, “Asymptotic pairs, stable sets and chaos in positive entropy systems”, J. Funct. Anal., 268:4 (2015), 824–846 |
11. |
W. Huang, X. Ye, G. Zhang, “Local entropy theory for a countable discrete amenable group action”, J. Funct. Anal., 261:4 (2011), 1028–1082 |
12. |
D. Kerr, H. Li, “Independence in topological and $C^*$-dynamics”, Math. Ann., 338:4 (2007), 869–926 |
13. |
D. Kerr, H. Li, “Combinatorial independence and sofic entropy”, Commun. Math. Stat., 1:2 (2013), 213–257 |
14. |
D. Kerr, H. Li, Ergodic theory: Independence and dichotomies, Springer Monographs in Mathematics, Springer, Cham, 2016 |
15. |
H. Li, Z. Rong, “Combinatorial independence and naive entropy”, Erg. Th. Dynam. Systems, 41:7 (2021), 2136–2147, arXiv: 1901.02657 |
16. |
J. Li, X. Ye, “Recent development of chaos theory in topological dynamics”, Acta Math. Sin. (Engl. Ser.), 32:1 (2016), 83–114 |
17. |
T. Li, J. Yorke, “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–992 |
18. |
J. Mycielski, “Independent sets in topological algebras”, Fund. Math., 55 (1964), 139–147 |
19. |
V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, 71, 1952 |
20. |
D. Rudolph, B. Weiss, “Entropy and mixing for amenable group actions”, Ann. of Math. (2), 151:3 (2000), 1119–1150 |
21. |
Z. Wang, G. Zhang, “Chaotic behavior of group actions”, Dynamics and numbers, Contemp. Math., 669, Amer. Math. Soc., Providence, RI, 2016, 299–315 |
22. |
J. Xiong, “Chaos in a topologically transitive system”, Sci. China. Ser. A, 48:7 (2005), 929–939 |