RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические труды

Матем. тр., 2021, том 24, номер 1, страницы 3–34 (Mi mt640)

Конечные однородные подпространства евклидовых пространств
В. Н. Берестовский, Ю. Г. Никоноров

Список литературы

1. Александров А. Д., Избранные труды, т. 2, Выпуклые многогранники, Наука, Новосибирск, 2007  mathscinet
2. Берестовский В. Н., Никоноров Ю. Г., “Конечные однородные метрические пространства”, Сиб. матем. журн., 60:5 (2019), 973–995  mathnet  mathscinet  zmath
3. Берестовский В. Н., Никоноров Ю. Г., “Киллинговы векторные поля постоянной длины на римановых многообразиях”, Сиб. матем. журн., 49:3 (2008), 497–514  mathnet  mathscinet
4. Берестовский В. Н., Никоноров Ю. Г., Риманова геометрия и однородные геодезические, ЮМИ ВНЦ РАН и РСО-А, Владикавказ, 2012  mathscinet
5. Берже М., Геометрия, т. 1, Мир, М., 1984  mathscinet
6. Веннинджер М., Модели многогранников, Мир, М., 1974  mathscinet
7. Вольф Дж., Пространства постоянной кривизны, Наука, М., 1982
8. Клейн Ф., Элементарная математика с точки зрения высшей, т. 2, Геометрия, Наука, М., 1987
9. Пидоу Д., Геометрия и искусство, Мир, М., 1979
10. Смирнов Е. Ю., Группы отражений и правильные многогранники, 2-е изд., МЦНМО, М., 2018
11. Berestovskii V. N., Guijarro L., “A metric characterization of Riemannian submersions”, Ann. Global Anal. Geom., 18:6 (2000), 577–588  crossref  mathscinet
12. Berestovskii V. N., Nikonorov Yu. G., “Clifford–Wolf homogeneous Riemannian manifolds”, J. Differ. Geom., 82:3 (2009), 467–500  crossref  mathscinet  zmath  elib
13. Berestovskii V. N., Nikonorov Yu. G., “Generalized normal homogeneous Riemannian metrics on spheres and projective spaces”, Ann. Global Anal. Geom., 45:3 (2014), 167–196  crossref  mathscinet  zmath  elib
14. Berestovskii V. N., Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer, Cham, 2020  crossref  mathscinet
15. Blind G., Blind R., “The semiregular polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154  crossref  mathscinet  zmath
16. Coxeter H. S. M., Regular Polytopes, 3d ed., Dover, New York, 1973  mathscinet
17. Coxeter H. S. M., Regular Complex Polytopes, 2nd ed., Cambridge Univ. Press, Cambridge, 1991  mathscinet  zmath
18. Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1997  mathscinet  zmath
19. Four-Dimensional Euclidean Space, http://eusebeia.dyndns.org/4d/index
20. Gosset Th., “On the regular and semi-regular figures in space of $n$ dimensions”, Messenger Math., 29 (1900), 43–48  mathscinet
21. Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, 2nd ed., Springer, New York, 2003  crossref  mathscinet
22. Har'el Z., “Uniform solution for uniform polyhedra”, Geom. Dedicata, 47:1 (1993), 57–110  crossref  mathscinet  zmath
23. Koca M., Al-Ajmi M., Koç R., “Polyhedra obtained from Coxeter groups and quaternions”, J. Math. Phys., 48:11 (2007), 113514, 14 pp.  crossref  mathscinet  zmath  elib
24. Koca M., Koca N.Ö., “Coxeter groups, quaternions, symmetries of polyhedra and 4D polytopes”, Mathematical Physics, Proc. of the 13th Regional Conf. (Antalya, Turkey, October 27–31, 2010), eds. Camci, Ugur et al., World Scientific, Hackensack, NJ, 2013, 40–60  mathscinet  zmath
25. Littlewood D. E., “The groups of the regular solids in $n$-dimensions”, Proceedings L. M.S., 32 (1930), 10–20  mathscinet  zmath
26. Martini H., “A hierarchical classification of Euclidean polytopes with regularity properties”, Polytopes: Abstract, Convex and Computational, Proc. of the NATO Advanced Study Institute (Scarborough, Ontario, Canada, August 20–September 3, 1993), NATO ASI Ser., Ser. C, Math. Phys. Sci., 440, eds. T. Bisztriczky et al., Kluwer Academic Publishers, Dordrecht, 1994, 71–96  mathscinet  zmath
27. Sikirić M. D., http://mathieudutour.altervista.org/Regular/
28. Wenninger M. J., Dual Models, Cambridge Univ. Press, Cambridge, 1983  mathscinet  zmath


© МИАН, 2025