RUS  ENG
Full version
JOURNALS // Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]

Mat. Vopr. Kriptogr., 2014, Volume 5, Issue 1, Pages 85–94 (Mi mvk108)

The estimate of the convergence rate to the uniform distribution for products of elements of finite group controlled by a Markov chain
I. A. Kruglov

References

1. Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, 1997, 85–112  mathnet  mathscinet  zmath
2. Kruglov I. A., “Otsenka srednekvadraticheskogo ukloneniya ot ravnoveroyatnoi matritsy dlya matrits perekhodnykh veroyatnostei proizvedenii sluchainykh velichin so znacheniyami v konechnykh gruppakh, raspredeleniya kotorykh opredelyayutsya tsepyu Markova”, Obozr. prikl. i promyshl. matem., 13:3 (2006), 507–509  mathscinet
3. Sachkov V. N., “Veroyatnostnye preobrazovateli i pravilnye multigrafy. 1”, Trudy po diskretnoi matematike, 1, 1997, 227–250  mathnet  mathscinet  zmath
4. Gorchinskii Yu. N., Kapitonov V. M., “O srednikh kvadraticheskikh ukloneniyakh v strokakh matrits perekhodnykh veroyatnostei na konechnykh gruppakh podstanovok”, Trudy po diskretnoi matematike, 2, 1998, 88–100  mathnet  mathscinet  zmath
5. Gantmakher F. R., Teoriya matrits, Nauka, M., 1988  mathscinet  zmath
6. Kruglov I. A., “Printsip skhodimosti B. M. Klossa dlya proizvedenii sluchainykh velichin so znacheniyami v kompaktnoi gruppe, raspredeleniya kotorykh opredelyayutsya tsepyu Markova”, Diskretnaya matematika, 20:1 (2008), 38–51  mathnet  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025